Table of Contents

General Information

Educational & Learning Objectives

Agenda

Faculty

Registrants

Exhibitors

Commercial Support & GSA Staff

Lecture Content

CME Credit Instructions

GSA Mission Statement

It is the mission of the Georgia Society of Anesthesiologists, Inc. to associate and affiliate into one organization all physicians and others in Georgia who are engaged in the practice of, or otherwise especially interested in, anesthesiology and its subspecialties; to encourage specialization in this field; to raise the standards of the specialty; to safeguard the professional interests of its members; and in all ways to develop and further educate within the specialty of anesthesiology for the general elevation of the standards of medical practice and patient safety.

Adopted by Board of Directors, Winter Meeting, January 15, 1999 Ratified by General Membership, January 17, 1999

General Information

Welcome

The 2016 GSA Summer Meeting is jointly sponsored by the American Society of Anesthesiologists and the Georgia Society of Anesthesiologists. As a convenience to GSA members and guests, this continuing education conference is structured as a two-day event. The meeting offers up to 11 *AMA PRA Category 1 Credits*TM with content derived from educational survey feedback and post-meeting evaluations over the last few years. The educational focus will inform attendees on current issues in anesthesiology and updates across multiple disciplines. The Ritz-Carlton Lodge at Lake Oconee, is an excellent venue for the conference. We hope that you enjoy the educational portion of the meeting and receive appropriate business and government affairs information during the GSA General Business Meeting, which will be held Sunday from 7:00 - 7:30 a.m.

Registration Fees

The GSA member rate is \$450 for physicians, \$175 for residents, \$275 for AAs, \$200 for retired physicians, and \$50 for students. The non-member rate is \$575 for physicians, \$225 for residents, \$375 for AAs, \$200 for retired physicians, \$50 for students, and \$575 for CRNAs. Educational seminars, breakfasts and breaks are for the REGISTRANT ONLY. A \$100 late fee will be applied to all registration forms received after Monday, July 18, 2016. This late fee applies to both on-site and online registration. Guests are welcome at both Friday and Saturday evening receptions.

Accreditation

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of the American Society of Anesthesiologists and the Georgia Society of Anesthesiologists. The American Society of Anesthesiologists is accredited by the ACCME to provide continuing medical education for physicians.

Credit Designation

The American Society of Anesthesiologists designates this live activity for a maximum of 11 AMA PRA Category 1 CreditsTM. Physicians should claim only credit commensurate with the extent of their participation in the activity.

This year's evaluation and CME certificate process is completely electronic. In order to access the course, claim your CME credits, complete the program evaluation and print your CME certificate, you must log in to the ASA Education Center at the following link: http://education.asahq.org/

Cancellation Policy

Cancellations and/or changes in registration or participation in all or any portion of the meeting must be received at GSA headquarters by Monday, July 18, 2016, to qualify for refund. Absolutely no refunds will be issued for changes received at GSA headquarters after Monday, July 18, 2016. The cancellation policy and late registration fee will be strictly enforced.

Evening Hospitality

All registrants, faculty, exhibitors and guests are invited to enjoy evening hospitality events offered Friday and Saturday. Badges are required for participation in all receptions. Please register your guests so that a badge can be produced.

Questions

Please visit the registration desk for more information or clarification on any of the meeting elements, schedule or CME verification.

Disclaimer

The information provided at this CME activity is for continuing education purposes only and is not meant to substitute for the independent medical judgment of a healthcare provider relative to diagnostic and treatment options of a specific patient's medical condition.

Educational and Learning Objectives

2016 GSA Summer Meeting July 22 - 24, 2016 Ritz Carlton Lodge at Lake Oconee

CME Activity Co-Directors

Tanna Boyer, MD & Vikas Kumar, MD Augusta University

Timothy G. Buchman, PhD, MD

Emory University Atlanta, GA

Error, Competencies and Standards in Critical Care

At the conclusion of the presentation, the learner should be able to:

- 1. Describe a taxonomy of error in conception and delivery of critical care.
- 2. Discuss the evolution of competency-based training in critical care.
- 3. Compare the training strategies of aviation and critical care.
- 4. Contrast the use of competencies and standards in evaluation of aviation and of critical care professionals.

Timothy G. Buchman, PhD, MD

Emory University Atlanta, GA

Cheryl Hiddleson, MSN

Emory Healthcare Inc. Atlanta, GA

Tele-ICU: Past, present and future for Georgia and the nation

- 1. Review the history of ICU telehealth.
- 2. Discuss the evolution of for-profit and not-for-profit ICU telehealth delivery system.
- 3. Critically evaluate prior reports of tele-ICU clinical and financial performance.
- 4. Analyze the tele-ICU component of the Emory CMS Healthcare Innovation Award with respect to clinical and financial performance.

Heather Byrd, MD

Augusta University Augusta, GA

J. Drew Prosser, MD

Augusta University Augusta, GA

Update on Sleep Apnea in Children – Anesthesia Perspectives

At the conclusion of the presentation, the learner should be able to:

- 1. Define pediatric OSA and discuss associated comorbidities.
- 2. Differentiate between adult and pediatric OSA.
- 3. Discuss pathophysiology related to pediatric OSA.
- 4. Discuss anesthetic implications of pediatric OSA and tonsillectomy.

J. Kenneth Byrd, MD

Augusta University Augusta, GA

J. Drew Prosser, MD

Augusta University Augusta, GA

Head and Neck Surgery: The Difficult Airway

At the conclusion of the presentation, the learner should be able to:

- 1. Recognize challenging airway scenarios in patients with head and neck disorders.
- 2. Formulate an airway plan based on anatomical factors in head and neck surgery.
- 3. Recognize understand the surgeon's perspective in head and neck disorders

Miguel Cobas, MD

University of Miami Miller School of Medicine Department of Anesthesiology Miami, FL

Monitoring Physiologic Principles of the Critically Ill

- 1. Assess physiology parameters useful in management of septic patients.
- 2. Review common tests and limitations in the ICU.

Barriers in implementing the Perioperative Surgical

At the conclusion of the presentation, the learner should be able to:

- 1. Identify the characteristics that make anesthesiologists good candidates for perioperative physicians.
- 2. Discuss some of the challenges that make it difficult for an anesthesiologist to fully participate in PSH.

James Rawson, MD

Chairperson of Radiology Augusta University Augusta, GA

Payment System Reform, How will this affect your practice?

At the conclusion of the presentation, the learner should be able to:

- 1. Review current models of reimbursement.
- 2. Review proposed models of reimbursement.

James Rawson, MD

Chairperson of Radiology Augusta University Augusta, GA

Waste, Lean, and Opportunity in Healthcare – learn how to save \$ in your health system At the conclusion of the presentation, the learner should be able to:

- 1. Review waste and inefficiency in healthcare
- 2. Review Tools of Lean
- 3. Discuss opportunities for improvements

Nitin Anand, BA, MD

Assistant Professor of Anesthesia Augusta, GA

Opportunity for Improvement

- 1. Outline several Lean based quality improvement projects.
- 2. Discuss the process of developing and designing a Lean based improvement project.
- 3. Discuss the Lean tools best suited to different projects.
- 4. Outline the difficulties and common errors made during the process.

Vikas Kumar, MD

Augusta University Augusta, GA

Shvetank Agarwal, MD

Augusta University Augusta, GA

Mohamed Gaber, MD

Augusta University Augusta, GA

PSH Ultrasound Workshop

- 1. Perform transthoracic and transesophageal echocardiograms.
- 2. Understand different views of cardiac ultrasound with a plethora of pathologies.
- 3. Perform abdominal FAST exam and basics of lung ultrasound.

GSA 2016 Summer Meeting Schedule

The Ritz Carlton Lodge Lake Oconee, GA July 22 - 24, 2016

Friday, July 22, 2016

3:00 - 7:00p	Registration - Salon III Pre-Function			
4:00 - 9:00p	Exhibitor Set Up - Salon III			
5:00 - 7:00p	Board of Directors Meeting - The Boardroom			
7:00 - 8:30p	Welcome Hospitality with the Exhibitors – Salon III			
8:30p	Dinner on your own with family and friends			
	Saturday, July 23, 2016			
6:00a	Exhibitor Set Up - Salon III			
6:30 - 7:20a	Registration/Breakfast with Exhibitors - Salon III & Salon III Pre-Function			
7:20a	Welcome - RCBR Salon I & II Heather Dozier, MD - GSA President			
	Introductions - RCBR Salon I & II Vikas Kumar, MD & Tanna J. Boyer, DO, MS Summer Meeting Activity Co-Directors			
7:30 - 8:30a	ASA Update - RCBR Salon I & II Jeff Plagenhoef, MD			
8:30 - 9:30a	Monitoring Physiologic Principles of the Critically Ill - RCBR Salon I & II Miguel Cobas, MD			
9:30 - 10:00a	Break with Exhibitors - Salon III & Salon III Pre-Function			
9:30 - 12p	Resident Section Meeting - Starling			
10:00 - 10:30a	Waste, Lean, and Opportunity in Healthcare – learn how to save \$ in your health system - RCBR Salon I & II Jim Rawson, MD			
10:30- 11a	Opportunity for Improvement - RCBR Salon I & II Nitin Anand, MD			
10:00a	GAAA Board of Directors Meeting- The Boardroom			

11:00 - 12:00p	Update on Sleep Apnea in Children – Anesthesia Perspectives - RCBR Salon I & II Heather Byrd, MD & Drew Prosser, MD			
12:00 - 1:00p	The Difficult Airway in Head and Neck Surgery - RCBR Salon I & II J. Kenneth Byrd, MD & Drew Prosser, MD			
1:00p	Meeting Adjourned/Lunch with family and friends			
1:00 - 4:00p	Perioperative Surgical Home Ultrasound Workshop including TTE, TEE, Lung, Abdomen/FAST with pathologies on simulation - Starling Vikas Kumar, MD			
1:00 - 4:00p	NYSORA Regional Workshop – Reynolds Ballroom			
1:00 - 4:00p	Resident and Medical Student Poster Session - Salon I & II			
1:00p	16 th Annual GSA Golf Tournament (pre-registration required)			
4:00 - 5:00p	12 th Annual Family Ice Cream Social (Sponsored by the GAAA) - Tupelo			
6:30 - 8:00p	Evening Reception – Linger Longer Ballroom			
7:30 – 9:00p	MCG Alumni Dinner – Tupelo			
	Sunday, July 24, 2016			
6:30 - 7:30a	Registration/Breakfast with Exhibitors - Salon III & Salon III Pre-function			
7:00 - 7:30a	General Business Meeting for GSA Members - RCBR Salon I & II			
7:30 - 8:30a	Payment System Reform, how will this affect your practice? - RCBR Salon I & I Jim Rawson, MD			
8:30 - 9:30a	Error, Competencies, and Standards in Critical Care - RCBR Salon I & II Timothy Buchman, MD, PhD			
9:30 - 10:00a	Break with Exhibitors - Salon III & Salon III Pre-Function			
10:00 - 11:00a	Tele ICU: Past, present and future for Georgia - RCBR Salon I & II Tim Buchman, MD, PhD & Cheryl Hiddleson, MSN, RN, CCRN-E			
11:00a - 12:00p Barrier	s in implementing the Perioperative Surgical Home - RCBR Salon I & II Miguel Cobas, MD			
12:00p	Meeting Adjourned			

Note: Opportunities for Q&A will be provided at the conclusion of each presentation.

Program and Education Committee

A special thanks to the Program and Education Committee for reviewing lecture materials to ensure lectures meet learning objectives and do not exhibit biased content. Members of the Program and Education Committee are as follows:

Brian Thompson, MD, Co-Chair Gautam Sreeram, MD, Co-Chair Heather Dozier, MD Kirk Edwards, MD Korrin Scott Ford, MD Tanna Boyer, MD Gina Scarboro, CAA

Disclosure and Resolution of Conflicts of Interest

The American Society of Anesthesiologists remains strongly committed to providing the best available evidence-based clinical information to participants of this educational activity and requires an open disclosure of any potential conflict of interest identified by our faculty members. It is not the intent of the American Society of Anesthesiologists to eliminate all situations of potential conflict of interest, but rather to enable those who are working with the American Society of Anesthesiologists to recognize situations that may be subject to question by others. All disclosed conflicts of interest are reviewed by the educational activity course director/chair to ensure that such situations are properly evaluated and, if necessary, resolved. The American Society of Anesthesiologists educational standards pertaining to conflict of interest are intended to maintain the professional autonomy of the clinical experts inherent in promoting a balanced presentation of science. Through our review process, all American Society of Anesthesiologists CME activities are ensured of independent, objective, scientifically balanced presentations of information. Disclosure of any or no relationships will be made available for all educational activities.

Planner, Faculty and Staff Disclosure

All Faculty, including editors, authors, reviewers, and staff for the GSA 2016 Summer Meeting reported they have no relationships with commercial interests.

Planners:

Brian Thompson, MD, Co-Chair

Gautam Sreeram, MD, Co-Chair

Heather Dozier, MD

Kirk Edwards, MD

Korrin Scott Ford, MD

Tanna Boyer, MD

Gina Scarboro, CAA

Vikas Kumar, MD

Jet Toney, GSA Executive Director

Brooke Cain, GSA Meeting Planner

Presenters:

Jeff Plagenhoef, MD

Miguel Cobas, MD

Jim Rawson, MD

Nitin Anand, MD

Heather Byrd, MD

Drew Prosser, MD

J. Kenneth Byrd, MD

Vikas Kumar, MD

Timothy Buchman, MD, PhD

Cheryl Hiddleson, MSN, RN, CCRN-E

Meeting Registrants

(as of July 14, 2016)

Nitin Anand, MD 1318 Hickman Rd. Augusta, GA 30904 Robert Arasi, MD 3135 Huntbury Lane Milton, GA 30004

Carolyn Bannister, MD 13762 Windsor Crown Ct West Jacksonville, FL 32225 Fathi Bashir, MD 1018 Micah terrace Evans, GA 30809

Robert Baumann, MD 4571 River Bottom Drive Norcross, GA 30092 James Beeson, MD 7821 Metcalf Road Thomasville, GA 31792

Timothy Beeson, MD 3715 Sapphire Dr Martitnez, GA 30907 Nathan Brandon, MD 3525 Greenway Dr. Evans, GA 30809

Amanda Brown, MD 203 Westchester Dr Macon, GA 31210 William Buntin, CAA 2407 Pendleton Street Albany, GA 31721

Tia Clements, MMSc 1411 Druid Oaks NE Atlanta, GA 30329 Kelli Corless, CAA 1395 Ridgefield Drive Roswell, GA 30075

William Daniel, MD 1116 Weatherstone Drive NE Atlanta, GA 30324 Jaiwant Avula, MD 125 Woodchase Drive LaGrange, GA 30240 Ralph Dapaah, CAA 4892 Patterson Ln Gainesville, GA 30506 Nerlyne Dhariwal, MD 1451 Briarcliff Rd. NE Atlanta, GA 30306

Cayetano Dizon, MD 1150 St. Andrews Drive Macon, GA 31210 David Draper, MD 1231 Skip Wells Ct Tallahassee, FL 32312

Wiley Drury, MD 2 Plantation Circle Valdosta, GA 31605 Peggy Duke, MD 3530 Piedmont Road Penthouse 3 Atlanta, GA 30305

Abimbola Faloye, MD 2160 Boyce Circle Marietta, GA 30066 Robert Gantt, MD 60 Highlands Ridge Lane Oxford, GA 30054

Maurice Gilbert, MD 156 Peachtree East Shopping Center Suite 153 Peachtree City, GA 30269 Stephen Golden, MD 4110 Thunderbird Drive SE Marietta, GA 30067

Ashley Hamilton, MD 1080 Peachtree St. NE Apt 2416 Atlanta, GA 30309 Julius Hamilton, MD 1845 Piedmont Ave. NE, Unit #448 Atlanta, GA 30324

Rickard Hawkins, MD 670 Briarleigh Way Woodstock, GA 30189 Eric Heil, C-AA 167 Grady ave Athens, GA 30601

Lauren Hinds, MD 4330 Ridge Cliff Dr. Augusta, GA 30909 Chuck Hufstetler, C-AA 3 Orchard Spring Drive Rome, GA 30165 Chuck Hufstetler, C-AA 3 Orchard Spring Drive Rome, GA 30165 Natalie Jenks, S-AA 534 Briarhill Ln NE Atlanta, GA 30324

Keith Johnson, MD 1060 Woods Road Waycross, GA 31501 Gary Kao, MD/(Resident) 680 Greenwood Ave NE #303 Atlanta, GA 30306

Alan Kaplan, MD 3155 Northpoint Parkway Suite 100 Alpharetta, GA 30005 Thomas Kessinger, MD 2071 Luxuria Ct Tucker, GA 30084

Matthew Klopman, MD 930 Edgewater Ct. Sandy Springs, GA 30328 Emily Kurokawa, MD 147 Gustav Court North Augusta, SC 29860

William Lane, MD 151 Gleneagles Circle Macon, GA 31210 Florence LeCraw, MD 222 12th St #2007 Atlanta, GA 30309

Leslie Lester, DO GRU Augusta, GA 30912 Christopher Ma, MD 1044 Emory Parc Place Decatur, GA 30033

Cory Mansour, MD 4461 Galway Drive Evans, GA 30809 Charles McMillon, MD 1014 Nottingham Lane NE Atlanta, GA 30319

Steffen Meiler, MD 787 Sparkleberry Road Evans, GA 30809 Jefferey Mills, MD 660 Ralph McGill BLVD #3109 Atlanta, GA 30312 Jefferey Mills, MD 660 Ralph McGill BLVD #3109 Atlanta, GA 30312 Katherine Monroe, MMSc, PhD 2549 Oak Crossing Drive Decatur, GA 30033

Fletcher Moore, MD 2131 McDowell St. Augusta, GA 30904 Amjad Najim, MD 5302 Grenada Lane Augusta, GA 30909

Emily Natarella, MD 345 Broadmoor Dr Fayetteville, GA 30215 John Neeld, MD 3025 River North Parkway Atlanta, GA 30328

Isaac Osei, MD 403 Lakeshore Drive Monroe, GA 30655 Marvin Palmore, Jr., MD 8550 Valemont Drive Atlanta, GA 30350

Krupa Patel, MD 3777 Peachtree Road NE #322 Atlanta, GA 30319 Hardik Patel, MD 936 Broad St. Unit 207 Augusta, GA 0

Matthew Rabito, MD 923 Peachtree St NE Unit 1125 Atlanta, GA 30309 Ellen Richter, MD 2887 Elliott Circle Atlanta, GA 30305

Michelle Romej, MD, MBA 1676 Bristol Drive NE Atlanta, GA 30329

Joy Rusmisell, CAA 243 Hines Terrace Macon, GA 31204

Joseph Schneider, MD 30 Lakeview Dr. NE Atlanta, GA 30317 Robin Schwartz, MD, MBA 4040 Glenside Ln. Aiken, SC 29803 Robin Schwartz, MD, MBA 4040 Glenside Ln. Aiken, SC 29803 Korrin Scott, MD 1705 Johnson Rd NE Atlanta, GA 30306

CarieAnn Sirmon, MD 423 Clairemont Ave Apt 11 Decatur, GA 30030 Michael Smith, MD 7205 Renaissance Way NE Atlanta, GA 30308

Kathryn Stack, MD 6200 Mountain Brook Lane Atlanta, GA 30328 Steven Sween, MD FCCP 240 Marchand Court, NW Atlanta, GA 0

Harsha Tanguturi, MD 468 Harold Ave ne Atlanta, GA 30307 Kristine Tindol, CAA 112 Winterberry Dr Savannah, GA 31406

Andy Truong, M.D. 147 Gustav Ct. North Augusta, GA 29860 Paul Turk, M.D. 111 Field Springs Court Macon, GA 31210

Claire Wainwright, CAA 1110 Ballpark Lane Apartment 2301 Lawrenceville, GA 30043 Steven Walsh, MD 53 Fowler Avenue Roswell, GA 30075

Oliver Ware, MD 212 Legacy Ct Birmingham, AL 35242 Shaun Williams, Md 4528 Ivy Wood Drive Fortson, GA 31808

Igor Zhukov, MD 1336 Nalley Cir Decatur, GA 30033

Exhibitors

(as of July 14, 2016)

MedPro Group

Grifols

Pall Medical

Georgia PHP

Teleflex

Pfizer

Medtronic

3D Systems

QGenda

GE HEALTHCARE

Mallinckrodt Pharmaceuticals

Atlanta Capital Group

HEINE USA Ltd

Merck & Co., Inc

Cumberland Pharmaceuticals

PharMEDium Services, LLC

Intermedix

MAG Mutual

Mylan, Inc.

Pacira Pharmaceuticals, Inc.

GSA Staff

James E. "Jet" Toney

LeAnn Johnston

Executive Secretary

Financial Services

Brooke Cain

Morgan Pitts

Meeting Planner

Summer Government Affairs Intern

Stephanie Bowen

Member Services & Government

Relations Manager

The Georgia Society of Anesthesiologists is headquartered at the offices of Cornerstone Communications Group, Inc.

1231-J Collier Rd. NW Atlanta, GA 30318 404-249-9178

For more information about the GSA, go to www.gsahq.org. For more information about Cornerstone Communications Group, go to www.cstonel.com.

Commercial Support Acknowledgment

The Georgia Society of Anesthesiologists gratefully acknowledges the commercial support of the following companies:

MAG Mutual

Un-restricted educational grant

CAE

In-kind donation of 1Vimedix Ultrasound Simulator

3D Systems

In-kind donation of 1 Mentor Ultrasound Simulator

Saturday, July 23

General Session

Curriculum Vitae Jeffrey Scott Plagenhoef, M.D.

Address: Home: Business:

2221 Dominic Court 100 Hillcrest Medical Blvd Waco, TX 76712 Waco, TX 76712 Cell (334)790-9648 (254) 202-5835

jsplag@aol.com

Date/Place of Birth: May 7,1960

Kalamazoo, Michigan

Marital Status: Married - Deborah Linn Plagenhoef, MD

Children - Nicholas Graham, October 22, 1990

Madelin Maris, February 11, 1993 Alexander Braden, April 24, 1994

Education: Augusta College

Augusta, Georgia

September 1978 - June 1979

Michigan State University East Lansing, Michigan

September 1979 – August 1983

B.S. – Psychology, High Honor graduate

Medical College of Georgia

Augusta, Georgia

September 1983 - June 1987

Medical Doctor

Internship: Transitional

Lloyd Noland Hospital Birmingham, Alabama July 1987 – June 1988

Residency: Anesthesiology

University of Alabama at Birmingham

Birmingham, Alabama July 1988 – June 1991

Chief Resident, January 1991 – July 1991

Board Certification/

Licensure:

Diplomat, American Board of Anesthesiology, 1992 Diplomat, National Board of Medical Examiners, 1988

Alabama Medical License #14175, July 1988

Professional Society Memberships: American Society of Anesthesiologists Medical Association of the State of Alabama Alabama State Society of Anesthesiologists **Houston County Medical Society**

International Anesthesia Research Society

Professional Service: American Society of Anesthesiologists (ASA):

ASA President Elect, 10/2015- present

ASA VA Nursing Handbook Response Campaign Chairman, 1/2016 - present

AQI BOD, 10/15 - present

ASA 1st Vice President, 10/2014 – 10/2015

Chairman, Ad Hoc Committee on NACOR Assessment and Business Plan

Development, 11/14 – 10/15

ASA Ad Hoc Committee on Teaching Regional Anesthesia, 2014

ASA Ad Hoc Committee for Children's Surgical Care, February, 2014 - 2015

Ad Hoc Committee for the Maternal Quality Improvement Partnership between

ACOG and ASA, January, 2014 - present

ASA Strategic Planning Committee, November, 2012 - present

Participant ASA 2013 Future Education Summit, Chicago, IL November, 2013

ASA Subspecialty Society Steering Committee, October, 2013 - present

Ad Hoc Committee on Governance Efficiency and Effectiveness, 2013-2014

Administrative Council (AC) Ad Hoc Committee on Data Governance, 2013 -2014

Ad Hoc Committee on Approval of CEO Selection, 2012

ASA Assistant Secretary - 10/2012 - 10/2014

Chairman, ASA Section on Representation, 10/2012 - 10/2014

Member, Section on ASA Board Administrative Affairs, 10/2012 -10/2014

ASAPAC Independent Expenditure Unit, 2011-2014

Member, ASA Ad Hoc Committee on State Component Society Advocacy and

Funding Assistance, 2011-present

ASA Assistant Secretary, October 17, 2012 – present

ASA Administrative Council, October 17, 2012 - present

ASA Ad Hoc Committee on Approval of CEO Selection October, 2012 -1013

ASA Ad Hoc Committee on Data Governance 10/2012 - present

ASA Committee on Professional Diversity, 10/12 - present

ASA Ad Hoc Committee on State Component Society Advocacy and Funding Assistance, Member, March 2011 – present

ASA Ad Hoc Committee on Health Policy Research, Member, November, 2010 – 2011

ASA Ad Hoc Committee on Electronic Health Records (AIMS), Member, January, 2011 - present

Chairman BOD, ASA Quality Institute and National Anesthesia Clinical Outcomes

Registry (NACOR) 2/2009 – 10/2012 Founding BOD Member, ASA Quality Institute and National Anesthesia Clinical

Outcomes Registry (NACOR), 10/2008- 10/2012

Recipient 2008 ASA Excellence in Government Award

ASA Committee on Finance, 10/2007 - present

ASA Board of Directors/Director AL, 10/2005-present

Chairman, ASA Committee on the Anesthesia Care Team, 10/2005-10/2010

ASA Political Action Committee, Executive Board Member, 10/2004- 10/2010

ASA PAC, Executive Board Secretary, 10/2009 – 10/2010

Alternate Director, Alabama Component Society ASA, Nov. 2002—2005

ASA House of Delegates, Member, 1996-present

ASA Southern Caucus, Secretary/Treasurer, 10/2004-2008

ASA Anesthesia Care Team Committee, member, 10/2004 -10/2011

ASA Task Force on Payment Methodology, member, 2004 & 2005

ASA Task Force on Anesthesia Assistant Education, member, 2004-2005

American Society of Anesthesiologists*

ASA – working for YOU and the Common Good of ALL!

Georgia Society of Anesthesiologists Annual Meeting Reynolds Plantation, Lake Oconee, GA July 23, 2016

asahn or

Jeffrey S. Plagenhoef, M.D. Chair, Baylor Scott & White Hillcrest ASA President Elect

Disclosures

Nothing

LA AMERICAN COCKETA OF AMERICAN CONTR

GSA's ASA Director and Alternate Director

- Howard Odum, M.D.
- * Tim Beeson, M.D.

Thank you, thank you, thank you!!!

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

GSA's Officers

- Heather J. Dozier, MD President
- Justin Ford, MD Secretary

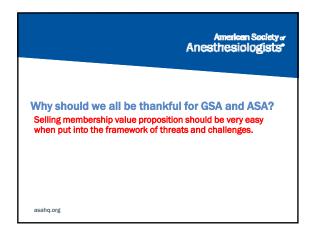
Thank you, thank you, thank you!!!

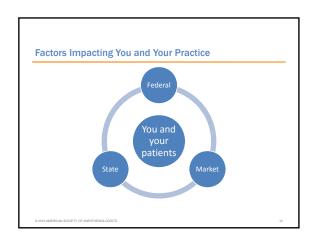
D 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

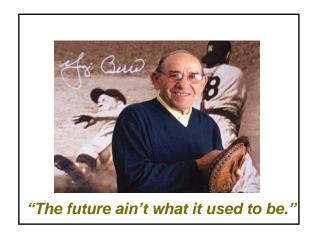
GSA Lobbyist and AAAA Ex Dir

JET TONEY!

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGIST


GSA Leading in ASA


- Steve Sween, M.D. ASA Speaker of the HOD and Chair Special Board Comm on Expert Witness Testimony
- John Stephenson, M.D. -- Chair, ASA Com on Anesthesia Care Team
- Howard Odum, M.D. Chair, ASA Com on AA Ed and Practice


2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

The Changing Marketplace impacts BOTH Your Practice and the ASA

- Hospital employment
- The Mega Group positive Vs negative impact?
- Academic & private blend
- ❖ ASA VERY AWARE!

O SOLE AMEDICAN OCCUETY OF AMESTUROUS COLO

Benjamin Franklin - July 4, 1776

"We must, indeed, all hang together, or assuredly we shall all hang separately!"

0.0045 AMERICAN COOPERS OF AMERICAN COURTS

American Society or Anesthesiologists*

Education

ASA Self-Assessment Programs Anesthesiology Continuing Education (ACE) Program Self-Evaluation Education (SEE) Program Self-Assessment Modules (SAM), developed w/sub-specialties Critical Care, Pain Medicine, Pediatrics (Current) SAM-Obstetrics (Fall 2016)

ASA Programs for MOCA 2.0 - Part IV Credit

 Simulation Education Network (SEN): a network of ASA-endorsed simulation programs for training physician anesthesiologists.

 46 Endorsed Simulation Centers currently available for Diplomates across the nation to receive MOCA Part IV credit.

© 2016 AMERICAN SOCIETY OF ANESTHESIOLOGIST

American Society or Anesthesiologists*

Advancing Quality

Patient Safety is Our Top Priority!

asahq.org

YOUR Professional Citizenship

is **CRUCIAL** to our future!!!

© 2014 AMERICAN SOCIETY OF ANESTHESIOLOGIST

Quality Initiatives - major value!

- ❖ Anesthesia Quality Institute "AQI"
- National Anesthesia Clinical Outcomes Registry "NACOR™"
- Qualified Clinical Data Registry "QCDR"
- A major overhaul is concluding!
- Standards, Statements and Guidelines
- Many committees' work product

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGIST

AQI Preferred Vendors

Advantedge (**) Periop

Advante

SURGICAL INFORMATION SYSTEMS

· · PICIS

AQI's Key Focus Areas in 2016 cont.

- As of June 30 successfully transitioned NACOR to **ArborMetrix's** cloud-based software platform
- They will manage:
 - Technical operations; data intake & hosting
- ArborMetrix improvements allow:
 - Scalability to manage growth
 - Reporting capability
 - Data integrity
- AQI will continue to manage NACOR's registry business operations and support ASA members conducting clinical research.

D 2016 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

The Problem Demanding Address

- The reported incidence of maternal mortality in the US is among the worst in high-resource countries (we currently rank #47)
- NO national system for reporting maternal complications and collecting necessary data
- If you aren't/can't measure it, you can't improve it either

What is MQIP?

- The Maternal Quality Improvement Project joint partnership ASA and ACOG to collect outcomes data on the clinical course of childbirth in the US.
- Steering Committee /Advisory Group content experts from obstetrics, anesthesiology, quality measurement, healthcare policy, and perinatal nursing, helped put together a data dictionary on which to base the data collected.
- Alpha site, Univ. of Rochester Medical Center w/Epic, (Epic plans to incorporate this into their foundation system for future sites) URMC has made their build tools available

American Society & An esthesiologists

Advancing Health Policy

Patient Safety is Our Top Priority!

asahq.org

ASA Depart. Of Health Policy Research – est. 2010 Thomas R Miller, PhD, MBA **PRINCE POLICY BRIEF **PRINCE POLI

Health Policy Research Resources Peer-Reviewed Articles Anesthesia Opt-Out Policy Physician Group Concentration QZ Billing Modifier Perioperative Surgical Home Trend Analyses Anesthesia, Surgical and Hospitalist Workforces Procedure Volumes in the United States

Health Policy Research Resources

- Policy Briefs
 - History of Anesthesiology
 - Critical Access Hospitals
 - · Health status of VHA patients
- Critical Reviews of Research
 - · Health Affairs Study
 - Silber Study
 - Duke Nurse Economic Impact Study
 - · Talking points for all key scope-of-practice studies

Fierce Healthcare, June 1, 2016

- $\ensuremath{\diamondsuit}$ "It's interesting that the same doctors who argue that they need to be involved in the care of our military veterans don't insist on being assigned to the front lines during military actions to care for soldiers horribly injured during battle, leaving this up to CRNAs to handle," said AANA President Juan Quintana in the statement. "Somehow, in their view, that's less complicated than caring for veterans stateside. That's an affront to any man or woman who has ever worn a uniform in service to this country.'
- http://www.fiercehealthcare.com/author/pminemyer

American Society or An eathesiologists

PR POLICY BRIEF

Advancing the Perioperative Surgical Home

Patient Safety is Our Top Priority

asahq.org

PSH-Why

- Quality & Safety
 - · Decrease complications
 - · Decrease readmissions
 - · Decrease mortality
- ❖Improve Operational Efficiency
 - Cost
- Strategically Positions our Specialty
- Aligns with Alternative Models of **Payment**

The PSH Learning Collaborative 2.0 June '16

Brought together organizations from across the country to learn from each other and subject matter experts to prepare for PSH implementation or to optimize post-implementation performance, including:

- Increased adherence to evidence-informed guidelines &
- Improved quality and safety of perioperative care
- Reduced complications and readmission rates
- Reduced surgical costs and superior value
- Enhanced patient and family experiences

YOUR Professional Citizenship

is **CRUCIAL** to our future!!!

American Society of Anesthesiologists*

Your Comprehensive Advocacy Core

Educational – ASA members <u>and</u> public GME Funding Scientific Regulatory PR/Marketing/branding

Health Policy
Payment - billing, payment, amounts

Legislative Political

asahq.org

Research Funding

- Anesthesiology research opportunities.
 - Research funding for Anesthesiology from NIH is less than 1% of total NIH budget.
 - · Research will help to demonstrate the specialty's value.
 - Opportunities scientifically and clinically to do "new and better things" in specialty.
- Goals: Identify consensus priorities of potential problems and opportunities to address based on impact to the specialty, patients and ability to make significant progress. Develop White Paper. Engage ASA Advocacy apparatus to pursue priorities at federal funding agencies and in Congress.
- Resources: Research Summit 2016: White Paper, ASA physician leaders and staff, & external expertise.

CONTRACTOR AND CONTRACTOR OF A SECURIOR CONTRACTOR

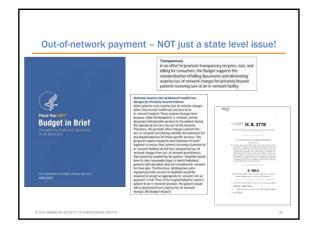
MIPS/APMs - Huge Changes in Payment!

- Implementation of Medicare Access and CHIP Reauthorization Act of 2015 (MACRA)
 - Permanently repealed the existing sustainable growth rate (SGR) physician payment update mechanism.
 - Implements a new payment system based upon physician participation in two pathways, the Merit-Based Incentive Payment System (MIPS) and Alternative Payment Models (APMs).
- Goals: Develop necessary tools to prepare ASA members for the new system. Engage CMS and Congress to shape implementation of MACRA to be favorable to physician anesthesiologists.
- Resources: ASA Ad Hoc Committee on Physician Payment Reform, ASA physician leaders and staff, external expertise.

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

ASA Leading the Fight Against Opioid Abuse

- National Crisis
- Goals: Support implementation of a multipronged strategy to reduce the misuse, abuse, and diversion of prescription opioid medications. Collaborate with stakeholder on solutions.
- Resources: ASA Ad Hoc Committee on Prescription Opioid Abuse. ASA physician leaders and staff, Pain Care Coalition, AMA Task Force to Reduce Prescription Opioid Abuse.


© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

40

ASA Leading the Fight Over Out-of-Network Billing & Payment

- A national issue that is a HUGE threat to patients and your practice
- Primary problem is inadequate insurance coverage
 - NARROW and TIERED Networks created unilaterally and sold nontransparently to patients
 - Huge unaffordable deductibles and copays
 - · Lack of transparency by insurers and HR departments
 - Legislators and consumer protection groups AND PHYSICIANS want to protect patients from surprise inadequate insurance
 - Insurance industry being dishonest and driving false narratives about the real causes of "surprise bills" Significant media coverage to issue of "surprise bills." They have been way ahead of physicians
 - Significant state and federal level legislative and regulatory activity

2015 AMERICAN SOCIETY OF ANESTHESIOLOGIST

ASA Leading a New Strategy of Attack

- New ASA Committee (payment, legislative & PR)
- Goals:
 - Redefine and change the narrative
 - Create a multi-specialty leadership coalition
 - · Create consensus principles and legislative strategy
 - Create resource allocation plan to support ASA work and state component societies
 - Create "Tool Box" for states PR and legislative

*GA SR 974 - enacted "Senate Surprise Bill Study" 2/2016

O SOLE AMEDICAN OCCUETY OF AMESTUROUS COLO

American Society of Anesthesiologists* Advocacy Public Relations

Research Told Us...

- Majority of the public and many policymakers unaware that anesthesiologists are physicians.
- Even fewer know how physician anesthesiologists save lives when emergencies occur.
- Quality of care is the No. 1 concern of Americans and policymakers.
- On issues of quality of care, physicians have almost unimpeachable levels of credibility.
- People want a physician in case of an emergency.

So we're talking about comprehensive advocacy,

The Advocacy Engine Needs Fuel!

- Reasonable Professional Citizenship = giving ANNUALLY to fund advocacy - local, state and national levels
- A "Plagenhoef-ism"

"Political contributions are a necessary part of the American system and are the volume control knobs on politicians' hearing aids."

0.0045 MEDIO M. 00015D/ 05 MEGTI/5010/ 00101

ASAPAC

and the "Alabama Cup" Competition

- State Society competition 3 award categories
 - Total Dollars
 - 2. Percentage giving
 - 3. Exemplary performance in current year (4 average dollar amount of donation)
- Resident Competition to be 100%, all give \$20
 - ❖ HUGE impact over time!!!
- * AA student competition
- * AAAA outperforms many state component societies

0.0045 AMERICAN COOPERS OF AMERICAN COURTS

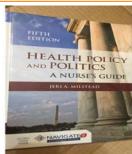
60

Why each anesthesiologist should be giving always

- Supporting patient safety and quality of care
- Supporting physician-led team-based care
- Leveraging the power of unity and size

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

ASA Alabama Cup


"Residency Program Competition"

- Initiated 2006 at UAB cont'd 10 years straight!
- ❖ Addresses "Einstein's Definition of Insanity"
- ❖ All residents expected to give \$20 annually to ASAPAC
- ❖ Goal: 100% of residents support ASAPAC EVERY year
- Expected that all residents are taught about the crucial value of advocacy for our patients and our medical specialty
- In the last several years 38-40 programs have achieved 100% - >5,000 residents now "get it"
- The SAD REALITY = ~80 residencies are never at 100% and likely aren't pushing advocacy education at all (ACGME requirements compliant???)

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

52

What's in Your Library?

2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

ASA Alabama Cup "Student AA Competition"

- ❖ All SAAs expected to give \$20 annually to ASAPAC
- ❖ Goal: 100% of AAs support ASAPAC EVERY year
- Expected that all AA students are taught about the crucial value of advocacy for our patients and our specialty

2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

Compare your Professional Citizenship to NAs and AAs

- ❖ AA training programs at 100% donation rates to ASAPAC
- ❖ AAAA has outperformed over 20 state components
 - *% that give to ASAPAC
 - *Avg \$ amount donated
- * AANA members outperform ASA members

a sour authorate control of authorations control

FSA's ASAPAC Support History					
# Members	# ASAPAC Donors	% Members Giving	Total Dollars Raised	Average Contribution	
1794	535	29.8%	\$145.070	\$271	
1776	670	37.7%	\$157,350	\$235	
1886	794	42.1%	\$199,804	\$252	
1857	679	36.6%	\$170,332	\$251	
2002	707	35.3%	\$180,991	\$256	
1907	590	30.9	\$168,286	\$285	
		21%		\$249	
	1794 1776 1886 1857 2002	Donors 1794 535 1776 670 1886 794 1857 679 2002 707	Donors Giving 1794 535 29.8% 1776 670 37.7% 1886 794 42.1% 1857 679 36.6% 2002 707 35.3% 1907 590 30.9	Donors Giving Raised 1794 535 29.8% \$145.070 1776 670 37.7% \$157,350 1886 794 42.1% \$199,804 1857 679 36.6% \$170,332 2002 707 35.3% \$180,991 1907 590 30.9 \$168,286	

ASSA's ASAPAC Support History					
Year	# Members	# ASAPAC Donors	% Members Giving	Total Dollars Raised	Average Contribution
2010	429 (FL 1794)	271	63.2%	\$144,698	\$534
2011	447 (FL 1776)	284	63.5%	\$159,285 (FL\$157,350)	\$560.86
2012	464	244	52.6%	\$117,362	\$480.99
2013	457	279	61.1%	\$133,5934	\$478.83
2014	470	269	57.2%	\$141,850	\$527.32
2015	483	257	53.2%	\$135,743	\$528
National Averages 2015			21%		\$249
© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS. 57					

GSA's ASAPAC Support History					
Year	# Members	# ASAPAC Donors	% Members Giving	Total Dollars Raised	Average Contribution
2011	785	191	24.3%	\$ 53,191.00	\$ 278.49
2012	845	205	24.3%	\$ 51,090.40	\$ 249.22
2013	882	189	21.4%	\$ 47,052.14	\$ 248.95
2014	1060	158	14.9%	\$ 46,786.29	\$ 296.12
2015	873	170		\$ 41,004.69	\$ 241.20
2016	894	83		\$ 21,351.90	\$ 257.25
National Averages			21%		\$249 sa

SAA's Alabama Cup

- ❖ 2012 AA Programs at 100%

 CWRU (Cleveland, Houston, F
 - CWRU (Cleveland, Houston, DC), UMKC, South University, Nova Ft Lauderdale
- 2013 AA Programs at 100%
 - CWRU (Cleveland, Houston, DC), UMKC
- 2014 AA Programs at 100%
 - CWRU (Cleveland, Houston, DC), UMKC
- * 2015 AA Programs at 100%
 - CWRU (Cleveland, Houston, DC), UMKC

*Do you see the Emory program anywhere? Why not???

*2016 Update *

8 Residency Programs at 100% Support of ASAPAC Now

- Brigham and Women's Hospital * Achieved in 2 days!
- Georgetown University
- Mayo Clinic Arizona
- Ochsner Medical Center
- University of Arkansas
- University of Chicago
- University of Texas, San Antonio
- West Virginia University

0 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

Georgia Residency Programs at 100% ASAPAC Participation

- ❖ MCG 2013 only!
- Emory NEVER!

Really?

6 2016 AMEDICAN DOCIETY OF AMERITMENIA OCIO

Let's Review this - THIS IS IMPORTANT TO GET!

- ASA Residents' Competition and the big push for comprehensive anesthesiology resident education in advocacy ever since 2006
- Two anesthesiology residencies in Georgia
- One of the two programs achieved 100% one year out of 10 years and the other one never has.
- ♦ Whv?
- ❖ Divide between UAB and Emory and MCG → the Chatahoochee River & 150 and 300 miles, respectively
- You tell me what is missing.

A Great Example:

Louisiana in 2015

Unprecedented LSA Leadership - the Joe & Kraig Show!

- All 4 LA Anesthesiology residencies @ 100 for residents AND also attendings!!!
- LSA doubled ASAPAC support level in one year
 - **2014=23**%
 - > 2015=46%
- Now, in 2016, they introduced the new

"LSA Ambassador's' Program"

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

Engagement and support is VITAL to our future!

"History will be kind to me for I intend to write it."

Winston Churchill

Will YOU be helping to write the future history of our specialty????

© 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

PAC Reps

2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

The

"APRN Consensus Model" Learn it!!!

- The VA's pro-nursing action--> straight from this House of Nursing's SOP advancement play book!
- You would be wise to enlighten your awareness of reality by "Googling" this topic
- ASA cannot win SOP battles without YOU doing your part too!

2014 AMERICAN SOCIETY OF ANESTHESIOLOGISTS

The VANH

#1 ASA Advocacy Focus

- ❖ Mandates independent practice for ALL APRNs
- Supersedes state scope laws and local Dept. Chiefs
- Do NOT fear to speak the truth about the value we deliver to safety & quality, and the difference between physicians and nurses in anesthesia care
- What's ASA doing about it?
- ❖ <u>www.safesafevacare.org</u> You + 5 = "1+5Plan"!

Take Action Now!!!

www.SafeVACare.org

Even Football coaches have it right!

"The only place success comes before work is in the dictionary."

Vince Lombardi

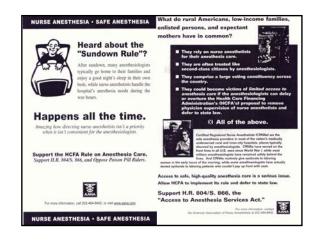
D 2015 AMERICAN SOCIETY OF ANESTHESIOLOGIST

ASA State Components with Most **Total Comments Submitted** Opposing the VANH

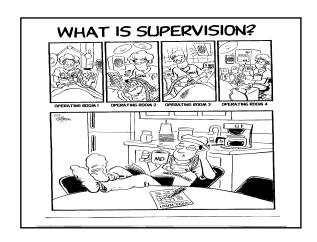
- 1. Texas
- 2. California
- 3. Florida
- 4. New York
- 5. Michigan
- 6. Georgia!

© 2014 AMERICAN SOCIETY OF ANESTHESIOLOGIST

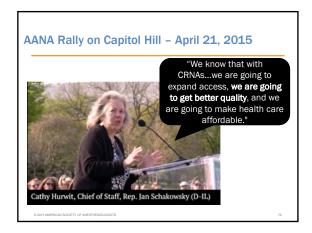
Your VA Advocacy Performance Compared to Similar Sized States


State	Total Comments	Total Membership	Percentage of Membership		
fds	1353	990	137%		
Virginia	2042	939	217%		
Georgia	2239	910	246%		
Indiana	1001	891	112%		
Maryland	1008	886	113%		

ASA State Components with Most Total Comments Submitted as % of Membership


- **#1.** Oklahoma
- #2. Louisiana
- #3. New Hampshire
- #4. Georgia!
- #5. Kansas

A 1915 AMERICAN OCCIETY OF AMERICAN COLOT



Our messaging – SUPER important! What are YOU going to do in order to counter that narrative? Not GSA, not ASA, YOU!

YOUR Professional Citizenship

is **CRUCIAL** to our future,

And the ASA needs YOUR specific, individual help!!!

2014 AMERICAN SOCIETY OF ANESTHESIOLOGIS

Be the contributor that WE need you to be!

Thank you very much,

Jeffrey S. Plagenhoef, MD
ASA President Elect
Cell: (334)790-9648
j.plagenhoef@asahq.org
jsplag@aol.com

D 2015 AMERICAN SOCIETY OF ANESTHESIOLOGISTS.

Monitoring Physiologic Principals of the Critically Ill

Miguel Cobas, MD

University of Miami Miller School of Medicine Department of Anesthesiology Miami, FL

At the conclusion of the presentation, the learner should be able to:

- 1. Assess physiology parameters useful in management of septic patients.
- 2. Review common tests and limitations in the ICU.

University of Miami Curriculum Vitae

1. Date: March 2016

I. PERSONAL	
2. Name:	Miguel A. Cobas, MD, FCCM
3. Home Phone:	305-593-0201
4. Office Phone:	305-256-5267
5. Home Address:	5444 N.W. 94 th Doral Place Doral, FL 33178-2029
Mailing Address:	Jackson South Community Hospital Dept. of Anesthesiology 9333 SW 152 nd . Street Miami, FL 33157
6. Current Academic Rank:	Associate Professor of Anesthesiology
6a. Current Track of Appointment:	Clinical Educator Track
7. Primary Department:	Anesthesiology, Perioperative Medicine & Pain Management, Miller School of Medicine, University of Miami.
8. Secondary Appointment:	DeWitt Daughtry family Department of Surgery, Miller School of Medicine, University of Miami.
9. Citizenship:	American
10. Visa Status:	N/A

II. HIGHER EDUCATION

11. Institutional

Sept. 1985-Nov. 1992 Universidad Central de Venezuela

Dr. José María Vargas School of Medicine

Degree: Medical Doctor

Sept. 1979-Sept. 1984 Colegio San Ignacio de Loyola, Caracas, Venezuela

Degree: Bachelor in Science

12. Non-Institutional

July 1999- Sept. 2000 Harvard Medical School

Critical Care Medicine Fellowship Massachusetts General Hospital Brigham and Women's Hospital

June 1996- June 1999 University of Miami/Jackson Memorial Hospital

Anesthesiology Residency

Department of Anesthesiology, Perioperative

Medicine and Pain Management

June 1995- June 1996 University of Miami/Jackson Memorial Hospital

Internship, Department of Internal Medicine

13. Certifications and Licensure:

2012-2022 Re-certification, Critical Care Medicine

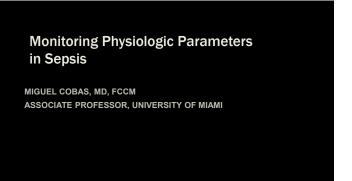
2002-2012 Subspecialty Certification, Critical Care Medicine,

American Board of Anesthesiology, Certificate

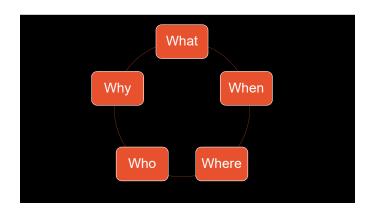
#33046

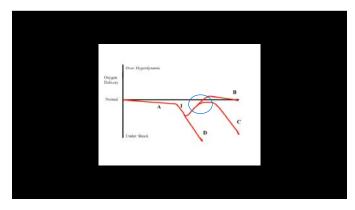
2010-2020 Re-certification, American Board of Anesthesiology

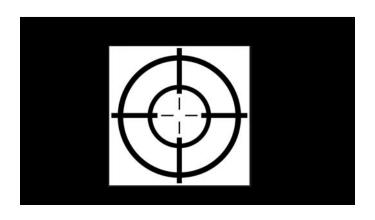
2000-2010 Certification, American Board of Anesthesiology,


Certificate #33046

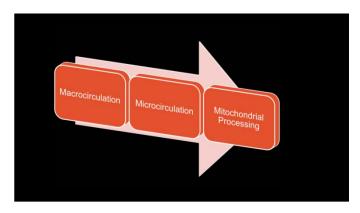
1999 Massachusetts Medical License #158366

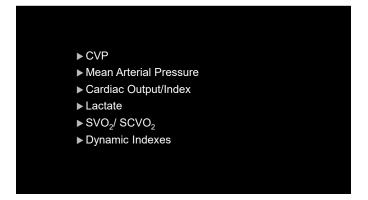

1998- present Florida Medical License ME 76886

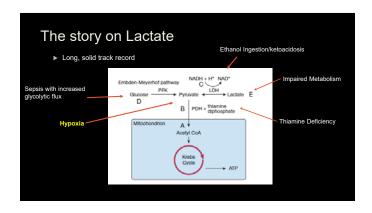

1995 Certification, Educational Commission for

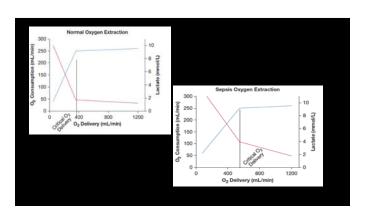

Foreign Medical Graduates #0-525-142-6

DISCLOSURE I have no financial relationships with commercial support to disclose.

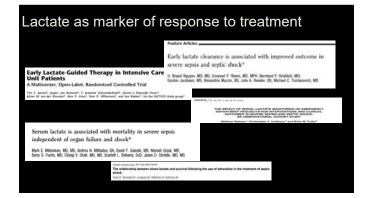










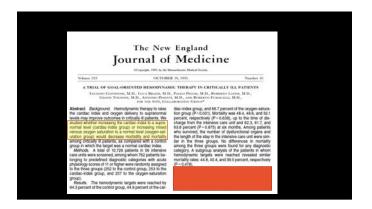


Lactate as prognostic factor & marker for response to therapy

- ▶ The higher the lactate, the worse
- ▶ Sepsis without lactate has a better prognosis
- ► Generally, a drop in lactate levels correlates with better outcome
- ▶ Epinephrine can confound the picture

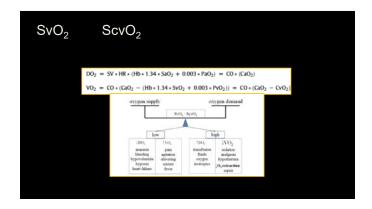
The story on Lactate

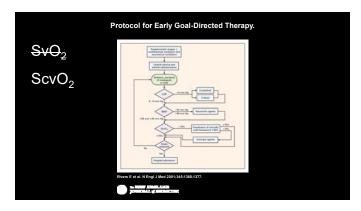

Increased Lactate in blood does not necessarily mean hypoxia
Increased Lactate in blood does not necessarily mean acidosis
Initial aggressive resuscitation aims to address tissue hypoxia as a source of lactic acidosis

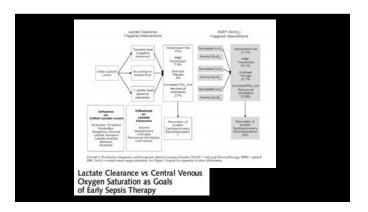

There is significant individual variation in the anaerobic threshold
Lactic acidosis can develop without tissue hypoxia

On the other hand, even when oxygen delivery is adequate, anaerobic metabolism can occur

Lactate is like smelling smoke: better be sure where is coming from before you dismiss it...







ScvO₂-based monitoring

- ▶ Rivers study has been the high point
- ▶ Has not been reproduced consistently
- ▶ It has been criticized harshly
- ▶ SCCM did adopt ScvO₂ as a marker/goal in SSC
- ▶ High ScvO₂ may actually portend bad outcomes
- ▶ It requires the placement of a CVC
 - ▶ This opens a whole new controversy about CVC in sepsis

Lactate Vs. SVO₂ Among patients with septic shock who were treated to normalize central venous and mean arterial pressure, additional management to normalize lactate clearance compared with management to normalize lactate more clearance compared with management to normalize scyO2 did not result in significantly different in-hospital mortality.

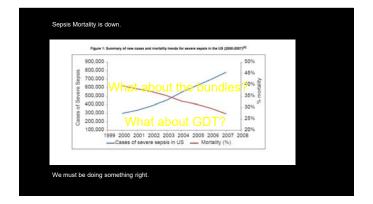
Protection in final educations in:

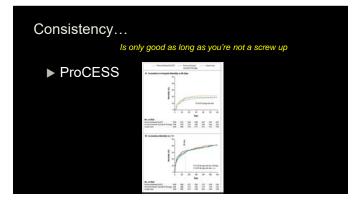
**Acute Emery Med 2012 March 19(3): 252-258. doi:10.1116/j.1553-2712.2012.01292.a.

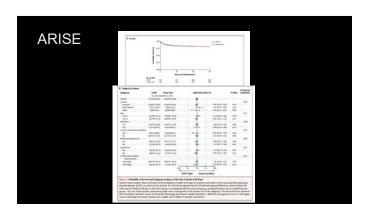
Prognostic Value and Agreement of Achieving Lactate Clearance or Central Venous Oxygen Saturation Goals During Early Sepsis Resuscitation

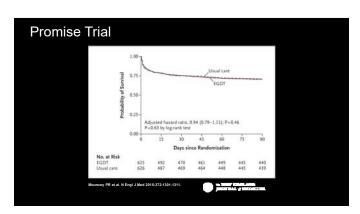
Michael A, Prakarich, Mb. Stephen Tracetak, Mb. MPH, Nathan 1. Shapire, Mb. MPH, Ryan C, Arnold, Mb. Aller, C. Herrer, Mb. Jeffroy A, Kline, Mb. Aller, E. Jones, Mb. and Emergency Medicine Shock Research Network (EMBARDCCNET) ones, Mb. and Emergency Medicine Shock Research Network (EMBARDCCNET)

No agreement was found between LC and ScvO2 goal achievement in early sepsis resuscitation. Achievement of a ScvO2 ≥70% without LC ≥ 10% was more strongly associated with mortality than achievement of LC ≥10% with failure to achieve ScvO2 ≥70%.

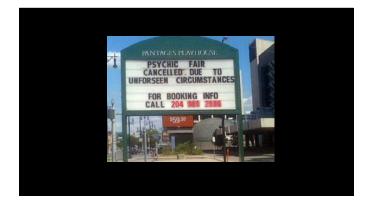

These data suggest that if only one goal is achieved, failure to achieve an LC of 10% has a worse prognosis than failure to achieve an ScvO2 of 70% during early sepsis resuscitation.




Microvascular Perfusion as a Target for Fluid Resuscitation in Experimental Circulatory Shock* Michel Egide van Genderen, NSC; Eva Kilin, MD; Alexandre Lima, MD; PhD; Jeroen de Jonge, MD, PhD; Seven Sterwijk Viner, MD; Jacqueline Voorbeijtel, BSc; Jan Bakker, MD, PhD; Jasper van Bommel, MD, PhD; The Right Target at the Right Time: The Microcirculation in Circulatory Shock*



Is that the future of Monitoring? ► Likely the combination of many different techniques increase the yield of a positive result ► Measuring regional, rather than global oxygen delivery and extraction holds promise ► Monitoring micro, rather than macrocirculation may be even better ► We're not there just yet, but...



Some Final Thoughts

- ▶ We are doing things in a much better, organized and protocolized fashion even if we don't hang our hat in a single value
- ▶ Medicine is an art:
 - ➤ We measure CVP to help reduce mortality in Sepsis even though we discredit it as a measure of volume assessment
 - ► We don't believe in PAC yet is the gold standards from which we compare all the measurements of NICO monitors
 - ➤ We declare an epidural hematoma a bumping emergency yet if it is the best way to take care of some headaches...
- Just by putting everything together, is already a big difference compared to 20 years ago. Everything we do is a Goal Directed Therapy.

Some Final Thoughts

- ▶ We are doing things in a much better, organized and protocolized fashion even if we don't hang our hat in a single value
- ▶ Medicine is an art:
 - ➤ We measure CVP to help reduce mortality in Sepsis even though we discredit it as a measure of volume assessment
 - ▶ We don't believe in PAC yet is the gold standards from which we compare all the measurements of NICO monitors
 - ➤ We declare an epidural hematoma a bumping emergency yet if it is the best way to take care of some headaches...
- Just by putting everything together, is already a big difference compared to 20 years ago. Everything we do is a Goal Directed Therapy.

Thank you...

Waste, Lean and Opportunity in Healthcare

James Rawson, MD

Chairperson of Radiology Augusta University Augusta, GA

At the conclusion of the presentation, the learner should be able to:

- 1. Review waste and inefficiency in healthcare
- 2. Review Tools of Lean
- 3. Discuss opportunities for improvements

CURRICULUM VITAE

James Vincent Rawson, MD, FACR

jrawson@augusta.edu

@Jim Rawson MD

P.L., J. Luther, Ada Warren Chair Chair of Radiology and Imaging Medical College of Georgia Chief of Radiological Services Georgia Regents Medical Center Childrens Hospital of Georgia

Professor of Business Administration Hull College of Business

Augusta University (formerly Georgia Regents University)

RECENT ADMINISTRATIVE PROJECTS

- Inaugural Chair of American College of Radiology Commission on Patient and Family Centered Care: created commission of five committees with almost 100 radiologists, radiation oncologists, patients, technologists and other stakeholders to improve patient experience in Radiology
- Project Lead on Georgia Regents Medical Center-Philips Health Agreement: 15 year partnership (\$300 million) including equipment, maintenance, education and innovation for enterprise; Georgia BIO Deal of the Year 2014
- Implementation of Lean Process Improvement in Radiology resulting in combined increased revenue and decreased expenses of over \$10 million

EDUCATION

1975-79	Medford Public High School, Medford, Massachusetts
1979-83	Tufts University, Medford, Massachusetts; Bachelor of Science Cum
	Laude; Triple Major in Chemistry, Religion and Biology
1983-85	Tufts University Graduate School/Department of Chemistry, Medford,
	Massachusetts
1985-89	Tufts University School of Medicine, Boston, Massachusetts; Doctor of
	Medicine

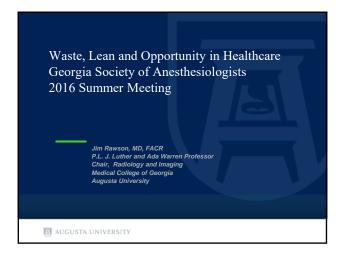
POSTDOCTORAL TRAINING

1989-90	Transitional Medical Internship, Lemuel Shattuck Hospital/Department of
	Public Health, Jamaica Plain, Massachusetts
1990-94	Diagnostic Radiology Resident, New York Medical College, Valhalla,
	New York; (Senior Chief Resident, 1993 to 1994)

1994-95	Fellow/Instructor, Body Magnetic Resonance Imaging, Mallinckrodt
	Institute of Radiology, Washington University, St. Louis, Missouri
1998	Certificate in Healthcare Evaluation, Medical College of Georgia
1999-2000	American College of Physician Executives (Courses: Health Law, Informatics A
	& B, Physicians in Management Seminar)
2013	Certificate of Achievement, Academy of Radiology Leadership and Management
2014	Certified Change Agent, National Health Services, School for Health can Care
	Radicals
2015	I-CAN Scholar, Institute of Healthcare Improvement

CERTIFICATION AND LICENSURE

1996	Certified Diplomat, American Board of Radiology (Diagnostic Radiology)
1995	Georgia Medical License
1994	Missouri Medical License

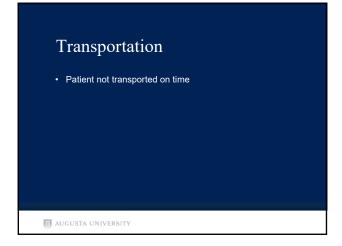

ACADEMIC/ADMINISTRATIVE APPOINTMENTS

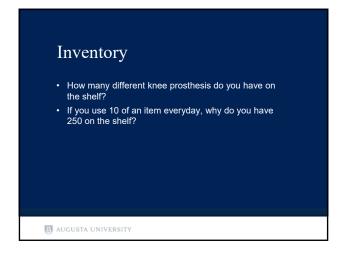
Medical College of Georgia, Augusta, Georgia

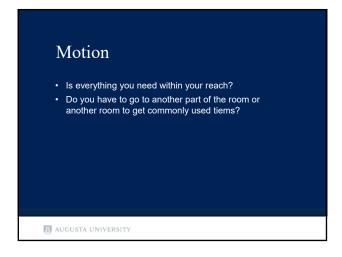
Assistant Professor of Radiology
Assistant Chief of Abdominal Imaging, Department of Radiology,
Chief of Abdominal Imaging Department of Radiology
Chief of Body Imaging, Department of Radiology
Chief Adult Imaging Section, Department of Radiology
Interim Chair and Associate Professor, Department of Radiology
Medical Director and Chief of Service, Radiology Services,
Medical College of Georgia Health, Incorporated,
 Medical College of Georgia Health, named best performer by
University HealthSystem Consortium, 2001
 Patient Centric Imaging Award 2013
 Patient Centric Imaging Award 2015
Medical Director, Vascular Ultrasound, Medical College of Georgia
Warren Professor and Chair, Department of Diagnostic, Therapeutic, and
Interventional Radiology
President of Medical Staff, Medical College of Georgia Health Inc
P.L., J. Luther, Ada Warren Endowed Chair and Chair of Radiology and
Imaging, Medical College of Georgia
Interim Chair/Chief of Service Radiation Oncology

GRANT/RESEARCH SUPPORT

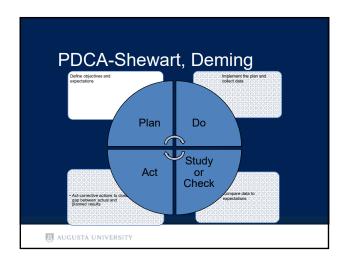
Project title: Discovering the Value of Imaging: A Collaborative Training Program in Biomedical Big Data and Comparative Effectiveness Research for the Field of Radiology,

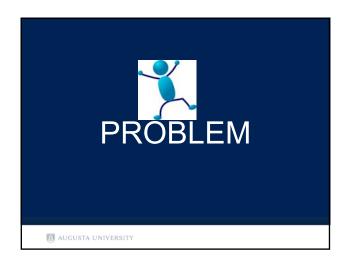




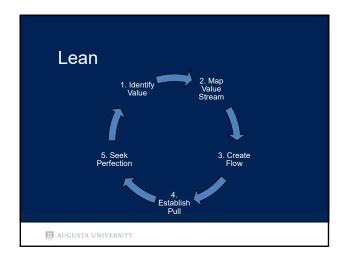

Eliminating Waste in HealthCare 1. Failures of Care Delivery 2. Failures of Care Coordination 3. Overtreatment 4. Administrative Complexity 5. Pricing Failures 6. Fraud and Abuse Total 21-34% National Health Expenditures Total \$558 Billion-\$910 Billion Berwick, Hackbarth JAMA. 2012;307(14):1513-1516

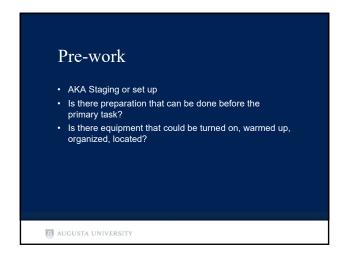
AUGUSTA UNIVERSITY

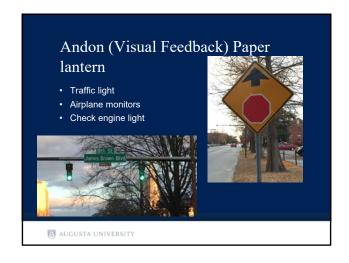




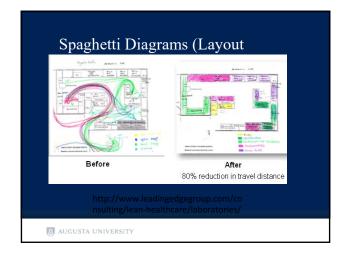
Over-processing How many people document the same event? How many people analyze the same patient data? How consults to we get to manage the same problem?

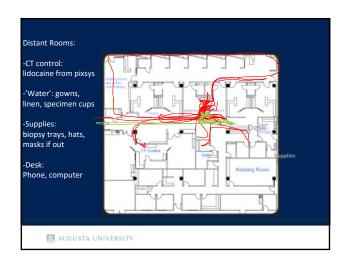


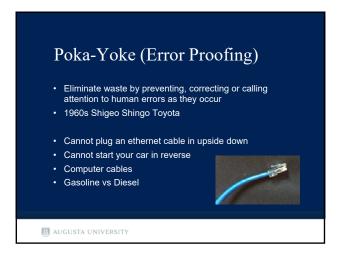


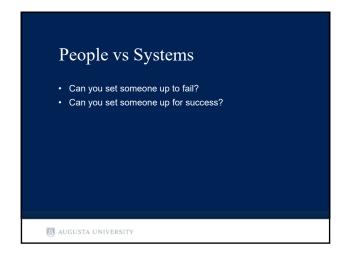


SS

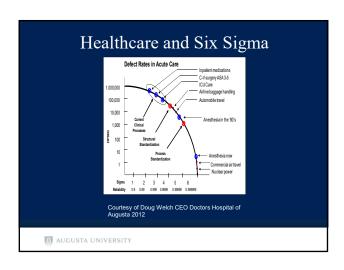

Sort
Straighten
Straighten
Shine
Standardize
Sustain
Other
Safety
Security
Forerunner of the Just In Time inventory system







"Every system is perfectly designed to achieve the results it achieves"


Paul Batalden

Opportunity for Improvement

Nitin Anand, BA, MD

Assistant Professor of Anesthesia Augusta, GA

At the conclusion of the presentation, the learner should be able to:

- 1. Outline several Lean based quality improvement projects.
- 2. Discuss the process of developing and designing a Lean based improvement project.
- 3. Discuss the Lean tools best suited to different projects.
- 4. Outline the difficulties and common errors made during the process.

NITIN ANAND MD

1318 Hickman Rd, Augusta, GA 30904 · 706-386-2967 · nitin23@gmail.com

SUMMARY

Highly qualified and efficient physician. Board Certified Cardiac Anesthesiologist with TEE Certification. Experienced in diverse anesthetic case
load including Cardiac, Thoracic, Vascular, Neuro, Ortho, Urology, OB, Acute Pain and Healthy Peds. Skilled in neuraxial anesthesia and basic
regional blocks. Comfortable with critically ill complex patient populations and building rapport with patients and family. Provide leadership and
supervision to Medical Students. Interns & Residents. Professional and team-oriented.

PROFESSIONAL EXPERIENCE

Assistant Professor of Anesthesiology
Augusta University
Augusta University
Augusta University
Augusta University
Augusta University

EDUCATION

Medical DegreeSt. Louis, MO USASaint Louis University School of Medicine2010

Bachelor of Health Studies Honours

McMaster University

Hamilton, ON CAN
2006

POST GRADUATE TRAINING

Fellowship
Western University | Cardiac Anesthesia Fellow

London, ON CAN
08/2014 - 06/2015

Internship & Residency
RUSH University Medical Centre | Resident Anesthesiologist
Chicago, IL USA
06/2010 - 06/2014

CERTIFICATION

American Board of Anesthesiology's (ABA) Part 1 Examination Written

Certified 07/2014

American Board of Anesthesiology's (ABA) Part 2 Examination Oral

Taken

Advanced Preoperative Transesophageal Echocardiography

Passed 09/2015

RESEARCH & PUBLICATION

Midwest Anesthesiology Residents Conference (MARC)

Presenter

03/2011

Presented, "A Rat Model of Lumbar Facet Joint Osteoarthritis"

Received FAER Award

University of Toronto - Department of Laboratory Medicine & Pathobiology

Clinical Researcher

Toronto, ON CAN
05/2007- 08-2007

PROFESSIONAL MEMBERSHIPS

Society of Cardiovascular Anesthesiologists

Canadian Anesthesiologist Society

American Society of Anesthesiologists

2009-Present

2008-Present

American Medical Association

2006-2010

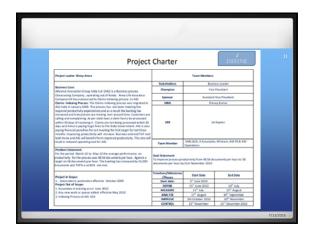
MEDICAL VOLUNTEER EXPERIENCE

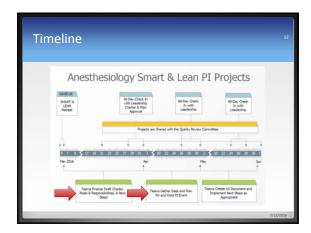
Rush University Medical Centre House Staff Association I *Vice President*Chicago, IL USA
06/2012 - 06/2013

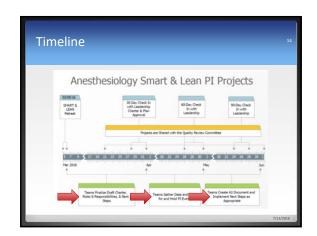
St. Louis University School of Medicine Health Resource Centre | Lead Coordinator St. Louis, MO USA 08/2007- 04/2010

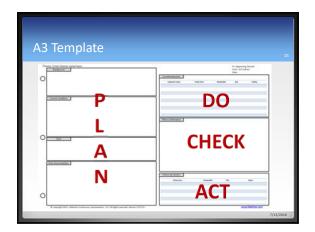
Learning Objectives - To outline several Lean based quality improvement projects - To discuss the process of developing and designing a Lean based improvement project - To discuss the lean tools best suited to different projects - To outline the difficulties and common errors made during the process

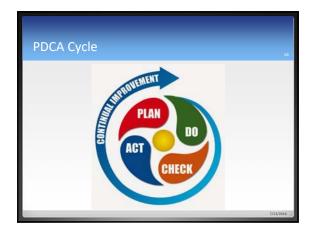
Incomplete airway management documentation and lack of a difficult airway alert in the patient's eMR. Patient hand-offs are performed inconsistently with variable patient information in the OR, PACU and ICU.

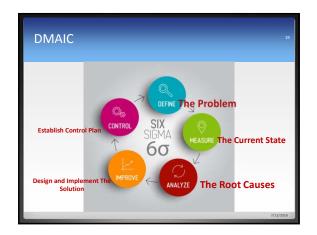

Anesthesia OR Joint Commission requirements are met inconsistently; e.g. syringe labeling, locking up of drugs. Preoperative patient evaluation guidelines are not uniformly practiced leading in some cases to day-of-surgery delays or cancellations.

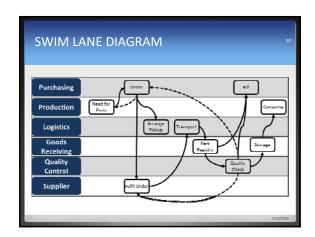


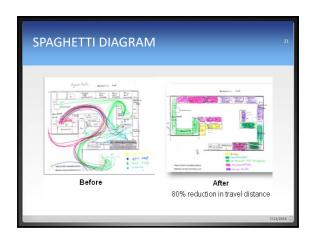


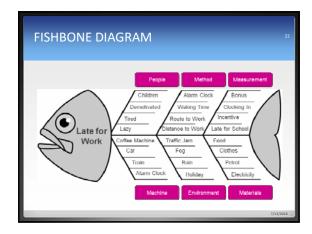














Pediatric OSA- Anesthetic Perspectives

Heather Byrd, MD

Augusta University

Augusta, GA

J. Drew Prosser, MD

Augusta University

Augusta, GA

At the conclusion of the presentation, the learner should be able to:

- 1. Define pediatric OSA and discuss associated comorbidities.
- 2. Differentiate between adult and pediatric OSA.
- 3. Discuss pathophysiology related to pediatric OSA.
- 4. Discuss anesthetic implications of pediatric OSA and tonsillectomy.

CURRICULUM VITAE

Heather Scott Byrd, MD Assistant Professor Department of Anesthesiology and Perioperative Medicine

Children's Hospital of Georgia

Augusta University

Office: 1446 Harper St. BT-2651, Augusta, GA 30912

Office: 707-721-5271

Home: 3585 Granite Way, Augusta, GA 30907

Cell: 256-431-0587

EDUCATION

HIGH SCHOOL

1996-2000 Athens High School

Athens, AL Salutatorian

UNDERGRADUATE

Dates Attended	Name and Location Of Institution	Degree Subject	Major
2000-2004	University of Alabama summa cum laude Tuscaloosa, AL	B.S.	Chemistry
2004-2008	University of Alabama School Of Medicine Birmingham, AL	M.D.	

POSTGRADUATE

Dates Attended	Name and Location Of Institution and Discipline	Name of Program Director
7/2008-6/2012	Department of Anesthesia and Perioperative Medicine Medical University of South Carolina Charleston, SC	Matt McEvoy, MD

7/2013-6/2014 Fellowship Franklyn Cladis, MD

Pediatric Anesthesia

Children's Hospital of Pittsburgh

Pittsburgh, PA

SPECIALTY CERTIFICATION

American Board of Anesthesiology (certificate #49973 – expires 12/2023) American Board of Pediatric Anesthesiology (9/13/2014 – 12/31/2024)

PROFESSIONAL

Years Inclusive	Name and Location of Institution	Rank/Title
2012 - 2013	Department of Anesthesia University of Pittsburgh Medical Center Pittsburgh, Pennsylvania	Clinical Instructor
2014 – present	Department of Anesthesia – Division of Pediatric Anesthesiology Augusta University Augusta, GA	Assistant Professor

HONORS/AWARDS

2003	Phi Beta Kappa
2005	Summer Neurology Student Research Scholarship, University of Alabama
	School of Medicine
2006	Fearn Fellow, University of Alabama School of Medicine

SCIENTIFIC AND PROFESSIONAL SOCIETIES

2008 – Present	American Society of Anesthesiology
2008 - 2012	ASA Political Action Committee
2008 - 2012	South Carolina Society of Anesthesiologists
2011 - Present	Society for Pediatric Anesthesia
2014 - Present	Georgia Society of Anesthesiologists

COMMUNITY ACTIVITIES

2006-08	Integrated Medical Sciences Subcommittee, Committee Member, UASOM
2010-12	Pediatrics Working Specialty Group, MUSC
2011-12	Anesthesia Education Committee, MUSC
2011-12	Residency Interview Committee, MUSC
2013-14	Fellowship Interview Committee, Children's Hospital of Pittsburgh

CURRICULUM VITAE

JOHN DREW PROSSER

918 Heard Ave Augusta, Georgia TEL: 706-338-7858

Email: jprosser@augusta.edu

EDUCATION/TRAINING:

Statesboro High School, Statesboro, GA 2000 (National Honor Society)

University of Georgia, Athens, GA 2004 (Honors, Cum Laude)

B.S. Genetics

Medical College of Georgia, Augusta, GA 2008 (AOA Honors)

Program: Medicine (M.D.)

Georgia Regents University, Residency 2013 (Chief Resident,

Department of Otolaryngology Finalist Resident of the Year)

Cincinnati Children's Hospital 2013-2015

Pediatric Otolaryngology Fellow

MEDICAL LICENCES

Georgia Active: 2015-present

Number: 73632 Exp: 11/2016

Ohio Inactive

Number: 57. 022822 9/9/2013-6/30/2015

South Carolina Inactive

Number: LL 33077 8/4/2010-6/30/2012

Georgia Inactive

Number: RTL 003094 7/1/2008-6/30/2013

BOARD CERTIFICATIONS

American Board of Otolaryngology Head and Neck Surgery 2015

OTHER LICENCES AND CERTIFICATIONS

National Provider Identifier: 2008-present

Number: 1942462627

DEA Provider Number

Number: FP 5161384

2015-present

Exp: 3/31/2018

EMPLOYMENT

Assistant Professor

Department of Otolaryngology- Head and Neck Surgery
Division of Pediatric Otolaryngology
Augusta University
Augusta, Georgia 30912

CURRENT HOSPITAL LEADERSHIP POSITIONS

Associate Residency Program Director
Otolaryngology Head and Neck Surgery Residency

Surgical Director/ Co-founder
Multidisciplinary Pediatric Sleep Disorders Center

Member of the Craniofacial Team

2015-present

Surgical Director/ Co-founder
Multidisciplinary Pediatric Trach/Vent Center

Co-Director of Otolaryngology Medical Student Rotation

Medical Informatics Director, Dept of Oto-HNS

2016-present

CURRENT COMMUNITY LEADERSHIP POSITIONS

Family Promise of Augusta

Board of Directors

The Church of the Good Shephard
Confirmation leader

2016-present

2016-present

MEDICAL SOCIETIES

American Medical Association (2004-2008)
American Medical Student Association (2004-2008)
American College of Physicians (2006-2008)
American Academy of Otolaryngic Allergy (2009-2013)
The Triological Society (2010-2013)
American Broncho-Esophagological Association (2011-2013)
American Academy of Otolaryngology (2009-present)
American Society of Pediatric Otolaryngology (2013-present)

Pediatric Sleep Apnea – Anesthetic Perspectives and Who needs a sleep study before T&A and what do we do with that information?

J. Drew Prosser, MD Assistant Professor Pediatric Otolaryngology Children's Hospital of Georgia

Heather S. Byrd, MD Assistant Professor Pediatric Anesthesia Children's Hospital of Georgia

Children's Hospi of ★Georgia

Disclosures

None

Children's Hospital of & Georgia

Pediatric Sleep Apnea

- Sleep Disordered Breathing
- Obstructive Sleep Apnea Pediatrics vs Adults
- Causes
- Pathophysiology
- Sequelae
- Diagnosis
- Complications
- Anesthetic Considerations

Sleep-Disordered Breathing

- SDB spectrum of sleep-related breathing abnormalities
 - Primary snoring 20%
 - Upper airway resistance syndrome
 - Obstructive hypopnea syndrome
 - Obstructive sleep apnea

Obstructive Sleep Apnea

- Episodic upper airway obstruction that occurs during sleep
- Episodic hypoxia

· What is OSA?

- Intermittent hypercapnia
- Sleep fragmentation

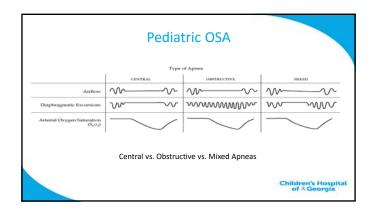
Children's Hospital of *Georgia

OSA Manifestations in Children

Nocturnal

- · Increased respiratory effort
- Oxygen desaturation
- Hypercapnia
- Disturbance in sleep patterns

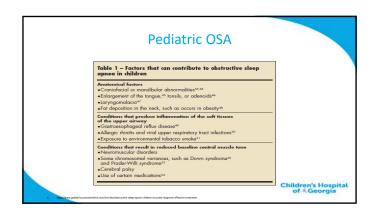
Davtime


- FTT
- Obesity · Poor school performance
- Inattentiveness
- Hyperactivity
- Somnolence
- · Behavior disturbance

Children's Hospital of * Georgia

Pediatric OSA

- · Apneas and hypopneas
 - Obstructive apnea respiratory effort but no airflow (85%)
 - Central apnea interruption in airflow and effort (10%)
 - Mixed apneas (5%)
 - Hypopnea shallow breathing, decreased airflow by at least 50%
 - Adult vs pediatric criteria


Children's Hospita of ⊀Georgia

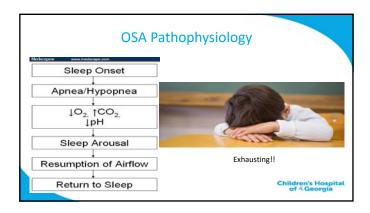
Pediatric OSA

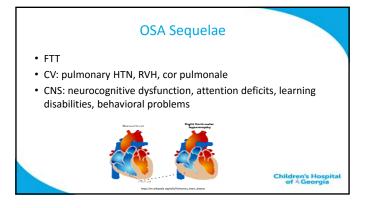
- Predisposing factors for upper airway obstruction
 - 1. Airway narrowing: obesity, enlarged tonsils/adenoids
 - 2. Discoordination between airway walls and muscles
 - 3. Abnormal neural control
 - 4. Muscle weakness: neuromuscular disorders

Children's Hospita of *Georgia

Pediatric OSA

- · OSA defined
 - Mild OSA: AHI 1-5
 - Moderate OSA: AHI 6-10
 - Severe OSA: AHI >10
 - REM Sleep
 - Prevalence: 1-3%
 - Peak 3-6 years




Children's Hospit

OSA Pathophysiology

- Deep sleep → decreased pharyngeal muscle tone → reduced airway dimensions → discoordinated pharyngeal muscle tone
- Progressive airway collapse → intermittent obstruction → increased respiratory effort → no airflow
- Prolonged airway obstruction → Hg desaturation, increased CO2

Children's Hospital of ⊀Georgia

OSA Diagnosis

- PSG EEG, EMG, EKG, pulse oximetry, airflow, and thoracic and abdominal movement
- Obstruction = more than two obstructive breaths
- Nocturnal oximetry
- Daytime sleep patterns and questionnaires

Children's Hospit of ⊀Georgia

PSG in Adults vs Children

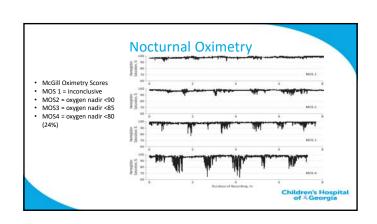
Adults

- Apnea duration 10 sec
- Hypopnea desat >=4%
- Hypopnea duration 10 sec
- Cortical arousals common
- Normal AHI <5

Children

- Apnea duration 2 breaths
- Hypopnea desat >=3%
- · Hypopnea duration 2 breaths
- Cortical arousals uncommon
- Normal AHI <1

From Karlson KH Jr: What's new in pediatric obstructive sleep apnea? Clin Pulm Med 15:226, 2008.


Children's Hospi

Why doesn't everyone have a PSG?

- · Lack of laboratories
- Expensive
- · Requires overnight stay

Children's Hospit

OSA and Postop Respiratory Complications

- Severity of OSA predicts the nature of perioperative respiratory complications
- RDI > 20 = breathing holding with induction
- RDI > 30 = laryngospasm and desaturation with emergence
- AHI > 10 and SaO2 < 80%

Children's Hospital of ⊀ Georgia

Risk Factors for Postop Respiratory Complications

- Age <3 years
- Severe OSA on PSG
- Cardiac complications from OSA
- Marked obstruction on induction
- FTT
- Obesity
- Hx of Prematurity
- Recent URI
- · Neuromuscular disorder
- Craniofacial abnormalities
- Genetic/chromosomal disorders

Children's Hospital

Conditions Associated with OSA

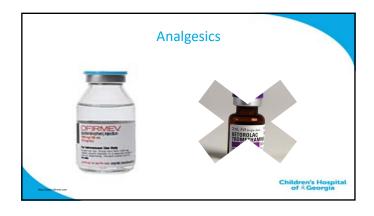
- Achondroplasia
- Apert syndrome
- Beckwith-Wiedemann
- CP
- Cleft palate after repair
- Crouzon syndrome
- Cystic hygroma
- Down syndrome
- Hypothyroidism
- Klippel-Feil syndrome

- Mucopolysaccharidosis
- Obesity
- Pierre Robin
- Pfeiffer syndrome
- Prader-Willi
- Sickle cell disease
- Treacher Collins

Facial features associated with OSA

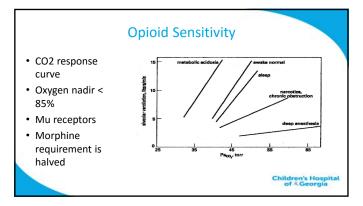
- Small triangular chins
- Retro-position of the mandible
- Steep mandibular plane
- High palate
- · Long, oval shaped face
- Long soft palate
- Large tonsils with the above features

eminault et al., Pediatrics 1996;98:871-82


Anesthetic Considerations

Anesthetic Considerations T and A

- · Midazolam premed
- · Inhalational induction
- Upper airway obstruction
- PEEP, 100% oxygen, and manipulation of TMJ
- Morphine 10-20 mcg/kg or fentanyl 0.2-0.5 mcg/kg
- Suction for blood and secretions
- Extubated awake
- · Lateral recovery position
- Nasal airway


Children's Hospital of *Georgia

Analgesics for T and A

- Dexamethasone reduces pain, edema, and vomiting
- NSAIDS controversial
- Acetaminophen
- Dexmedetomidine
- Local anesthetics intracranial hemorrhage, bulbar paralysis, deep cervical abscess, cervical osteomyelitis, medullopontine infarct, cardiac arrest

Children's Hospita of ≮Georgia

PONV

- Opioids
- Propofol
- Ondansetron
- Dexamethasone up to 24 hours
- Fluids (10-20ml/kg)

Children's Hospit

Outcomes

- >75% with improvement after adenotonsillectomy
- Obesity, severe OSA, RDI >19 may be associated with persistent OSΔ
- Craniofacial anatomy (Trisomy 21) and decreased neuromotor tone (CP) are risk factors
- CDAE
- Orthodontic maxillary expansion
- Mandibular distraction/advancement, midface advancement
 Children's Hosp

Discharge

- AHI <10, no comorbidities, age > 3 years
- Mild OSA \Rightarrow decreased apnea events, improved oxygen saturation
- · 2 hour minimum pacu stay
- More research is needed

Children's Hospital of & Georgia

Protocol?

Mild OSA

□ Severe OSA

- Premed: midazolam 0.7mg/kg po
- Hydromorphone: 10mcg/kg

□ Premed: midazolam 0.5mg/kg

□ Hydromorphone: 5 mcg/kg

- Moderate OSA
 - Premed: midazolam 0.5mg/kg
 - Hydromorphone: 7 mcg/kg
- □ All received tylenol, dexamethasone, and ondansetron

Children's Hosp of ⊀Georgia

References

Lemma, J. A. Guipublico no despedicioned brathmiq in Coursen. A receiver principal despedicione despedicione de la Année de la

Who needs a sleep study?

How about this kid? (my 5 year old!)

Answer

- · Maybe both or
- Maybe neither
- · Depending on who you ask!

Clinical Practice Guideline: Polysomnography for Sleep-Disordered Breathing Prior to Tonsillectomy in Children

UNDATION

Peter S. Roland, MD¹, Richard M. Rosenfeld, MD, MPH²,

- Obesity, Down syndrome, craniofacial abnormalities, neuromuscular disorders, sickle cell disease, or mucopolysaccharidoses.
- Cited "benefit [to] clinicians and patients by improving diagnostic accuracy in high-risk populations and defining the severity of OSA to optimize perioperative planning. History and physical exam alone are poor predictors of OSA severity or risk of postoperative complication."

Children's Hospital of × Georgia

AAO recommendations continued

- Surgeon "should advocate for PSG prior to tonsillectomy for SDB in children without any of the comorbidities ... for whom the need for surgery is uncertain or when there is discordance between tonsillar size on physical examination and the reported severity of SDB."
- Summary: Sleep study as the tie breaker.
 - Big tonsils but no snoring with concerned parent/clinician
 - Small tonsils but loud snoring/ questionable apneas

Children's Hospital of ⊀Georgia

RESPIRATORY INDICATIONS FOR POLYSOMNOGRAPHY IN CHILDREN

Practice Parameters for the Respiratory Indications for Polysomnography in Children

R. Nisha Aurora, MO¹, Rochelle S. Zak, MO¹, Anop Karippot, MO¹, Cann I. Lamm, MO¹, Timothy I. Morgenthaler, MO¹, Sanford H. Auerbach, MO¹,
Satin R. Bista, MO¹, Kenneth R. Casey, MO¹, Susmita Chowdhur, MO¹, David A. Kristo, MO¹, Kannan Ramar, MO¹

- American Academy of Sleep Medicine (2011)
- **Summary:** Everyone who is considered for T&A for obstructive symptoms should have PSG prior.

Children's Hospita of ⊀Georgia

Where do they agree?

- "Nap studies" are bad and should not be used in children
- Home sleep studies are bad and should not be used in children
- · Definitions of severity
 - Mild 1-5
 - Mod 5-10
 - Severe >10
- And since the AASM wants everyone to get a sleep study prior, they also agree with the AAO recommendation for those with comorbidities or discrepant H&P.

Children's Hospital

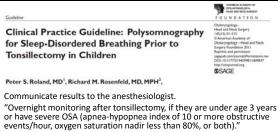
What are the problems with getting a PSG for everyone?

- Expense
- · Delay in treatment
- · No apnea, no need to treat.... right?

Published in final edited form as: Pediatrics, 2006 April; 117(4): e769-e778.

SLEEP-DISORDERED BREATHING, BEHAVIOR, AND COGNITION IN CHILDREN BEFORE AND AFTER ADENOTONSILLECTOMY

Ronald D. Chervin, M.D., M.S.¹, Deborah L. Ruzicka, R.N., Ph.D.¹, Bruno J. Giordani, Ph.D ², Robert A. Weatherly, M.D.³, James E. Dillon, M.D.⁴, Elise K. Hodges, Ph.D.², Carole L. Marcus, M.B.B.Ch.⁵, and Kenneth E. Guire, M.S.⁶


> Children's Hospita of *Georgia

What do we do here?

- For the most part we follow the AAO guidelines unless we have already decided on the higher level of post-operative care (PICU anyway regardless of what the sleep study says)
- I generally avoid sleep studies in the loud snorer with big tonsils and associated neurocognitive/behavioral problems
 - Negative PSG does mean will not benefit from T&A (Chervin, 2006)

Children's Hospital

What do we do with the information? Children's Hospital of * Georgia

"monitoring" defined as continuous pulse ox with the ability to provide O₂, CPAP, and intubation if required (not specifically PICU)

Children's Hospital of ≮Georgia

Tonsillectomy Care for the Pediatrician Glenn Isaacson Pediatrics 2012;130;324; originally published online July 2, 2012; DOI: 10.1542/peds.2011-3857

• "Children younger than 3 years and those with severe obstructive sleep apnea, coagulopathy, or certain comorbid conditions (eg, neuromuscular disorders, prematurity, obesity, failure to thrive, craniofacial anomalies) benefit from in-hospital observation"

Children's Hospital of ★Georgia

Predictors of Perioperative Complications in Higher Risk Children after Adenotonsillectomy for Obstructive Sleep Apnea: A Prospective Study

Anchana Thongyam, MD^{1,2,3}, Carole L. Marcus, MBBCh¹, Justin L. Lockman, MD⁴, Mary Anne Cornaglia¹, Aviva Caroff², Paul R. Gallagher, MA⁶, Justine Shults, PhD⁶, Joel T. Traylor, RPSGT¹, Mark D. Rizzi, MD⁵, and Lisa Elden, MD⁵

¹Sleep Center, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA ²Bangkok Pattaya Hospital

- Anyone with PSG defined OSA should be admitted after T&A (cited up to 25% respiratory complications post-op)
- AHI not the only predictor
 - − O₂ nadir
 - Elevated peak CO2

AASM Summary

".... values should not be considered absolute cutoffs, especially as ROC models failed to precisely define populations at risk, and thus, clinical judgment is still needed to determine which children with OSAS should have surgery at an ambulatory or pediatric hospital site and which should be admitted after adenotonsillectomy."

Children's Hospital of *Georgia

Head and Neck Surgery: The Difficult Airway

J. Kenneth Byrd, MD

Augusta University

Augusta, GA

J. Drew Prosser, MD

Augusta University

Augusta, GA

At the conclusion of the presentation, the learner should be able to:

- 1. Recognize challenging airway scenarios in patients with head and neck disorders.
- 2. Formulate an airway plan based on anatomical factors in head and neck surgery.
- 3. Recognize understand the surgeon's perspective in head and neck disorders

CURRICULUM VITAE

NAME: James Kenneth Byrd, MD **BIRTHPLACE:** Lexington, SC

3585 Granite Way (843) 819-6392 **HOME CELL PHONE:**

Martinez, GA 30907 **ADDRESS:**

United States CITIZENSHIP:

1120 15th Street **OFFICE:** BP4109

Augusta, GA 30912

OFFICE PHONE: (706) 721-6100 (706) 721-0112 **OFFICE FAX:**

EDUCATION AND TRAINING

E-MAIL:

ken.byrd@gru.edu

UNDERGRADUATE

Dates Attended	Name and Location Of Institution	Degree Subject	Major
1999-2003	University of South Carolina magna cum laude With Honors, USC Honors College Columbia, SC	B.S.	Chemistry
2003-2007	Medical University of South Carolina Valedictorian Charleston, SC	M.D.	

POSTGRADUATE

Dates Attended	Name and Location Of Institution and Discipline	Name of Program Director
7/07-6/08	Internship Department of Otolaryngology Department of General Surgery Medical University of South Carolina Charleston, SC	Ted Meyer, MD, PhD Otolaryngology
7/08-6/12	Residency in Otolaryngology- Head and Neck Surgery, Medical University of South Carolina Charleston, SC	Ted Meyer, MD, PhD

7/12-6/14 Clinical Fellowship Robert L. Ferris, MD, PhD

Advanced Training in Oncologic

Head and Neck Surgery,

Skull Base Surgery Carl H. Snyderman, MD, MBA

University of Pittsburgh Medical Center

Pittsburgh, PA

APPOINTMENTS AND POSITIONS

ACADEMIC

Years Inclusive	Name and Location of Institution	Rank/Title
2012 - 2014	Department of Otolaryngology University of Pittsburgh Medical Center Pittsburgh, Pennsylvania	Clinical Instructor
2014-Current	Department of Otolaryngology Georgia Regents University Augusta, Georgia	Assistant Professor

CERTIFICATION AND LICENSURE

SPECIALTY CERTIFICATION

American Board of Otolaryngology (certificate # 21296), 6/1/13 - 6/30/23

MEDICAL OR OTHER PROFESSIONAL LICENSURE

Pennsylvania State License - #MD445072 Georgia State License - #72220 DEA License - #FB3127330

MEMBERSHIPS IN PROFESSIONAL SOCIETIES

2007 - Present American Academy of Otolaryngology/Head and Neck Surgery (AAOHNS)
2010 - Present American Head and Neck Society, Candidate Member

HONORS/AWARDS

2003	Phi Beta Kappa
2003	Alpha Omega Alpha Pitts-Aiken Scholarship
2005	Thomas Holbrook Award, Outstanding Second Year Achievement
2005	Provost's Scholarship, Medical University of South Carolina
2005	Alpha Omega Alpha

The Difficult Airway in Head and Neck Surgery J. Kenneth Byrd, MD Assistant Professor Medical College of Georgia at Augusta University The Difficult Airway All Professor Medical College of Georgia at Augusta University

Disclosures

None

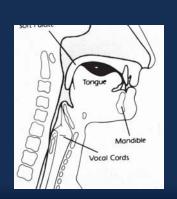
AUGUSTA UNIVERSITY

Objectives

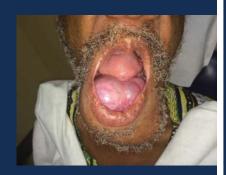
AUGUSTA UNIVERSITY

- For Adult and Pediatric patients with disorders of the head and neck:
 - Recognize challenging airway scenarios
 - Formulate an airway plan based on anatomical factors
 - Recognize and understand the surgeon's perspective

Head and Neck Squamous Cell Carcinoma


- •>50,000 New Cases Annually
- •~50% survival for all patients
- Affects appearance, communication, breathing, and swallowing
- Paucity of literature discussing general anesthesia for these patients

Head and Neck Cancer Common Sites


Adult HN Patients

- Oral cavity
- Oropharynx
- Larynx
- Hypopharynx
- Nasopharynx
- Paranasal Sinuses/Skull base
- Skin
- Thyroid
- Salivary

Challenges for Anesthesia Team

- Tumor
 - Bleeding
 - Airway impingement
 - Trismus
- Treatment
 - Prior surgery
 - Reconstruction
 - Prior tracheotomy
 - Radiation
- Tolerance
 - Substance dependence

Workup

- Assess for symptoms of occult airway compromise
 - Stridor/retractions
 - Hoarseness
 - Muffled voice
 - Inability to swallow saliva
- Preoperative imaging
 - CT neck with contrast
- Preoperative fiberoptic laryngoscopy
- Hypopharyngeal/laryngeal pathology
- Superior to indirect laryngoscopy

HNSCC: Subsite-specific Information

Oral Cavity

- Most common site in HN... maybe
- Common subsites
 - Tongue
 - Floor of Mouth
- Primary Treatment
 - Surgery
 - Resection, reconstruction, neck dissection
 - Adjuvant radiation +/chemotherapy for Stage III/IV

AUGUSTA UNIVERSITY

Oral Cavity Staging

Tabl	Oral Cavity (AJCC Staging, 7th ed., 2010)	
T1a	<2 cm	
T2	2–4 cm	
T3	>4 cm	
T4a	Invades bone, floor of mouth, inferior alveolar nerve, extrinsic tongue musculature, skin of face, or maxillary sinus	
T4b	Involves masticator space, pterygoid plate, skull base, or surrounds internal carotid artery	

Greenfield's Surgery, 6th Ed: Head and Neck. Byrd JK, Ferris RL. In Press

Oral Cavity: Anesthesia Concerns

- Trismus due to pterygoid muscle involvement will not resolve with paralytics
- T3/T4 oral tongue tumors have impaired mobility, making intubation difficult
- >T2 tongue will often require reconstruction
 - Tracheotomy indicated based on size and location of defect
 - Nasotracheal intubation is an alternative to tracheotomy*

USE OF NASOTRACHEAL INTUBATION IN PATIENTS RECEIVING ORAL CAVITY FREE FLAP RECONSTRUCTION

Oropharynx

- · Increasing incidence
- Subsites
 - Tonsils
 - Tongue base
 - Soft Palate
- Treatment
 - Surgery or Radiation
 - Transoral Robotic Surgery*

Oropharynx: Anesthesia Concerns

- Friable
- Trismus
- Tongue base tumor
- May displace epiglottis
- Midline laryngoscopy may not be possible
- Tonsil tumors
 - Careful with Glidescope!

Greenfield's Surgery, 6th Ed: Head and Neck. Byrd JK, Ferris RL. In Press

<2 cm

2-4 cm

>4 cm

T2

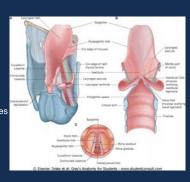
Т3

T4a

T4b

41-7 Oropharynx (AJCC Staging, 7th ed., 2010)

Invades larynx, extrinsic tongue musculature, medial pterygoid muscle, mandible, or hard palate


Involves lateral pterygoid muscle, pterygoid plates, lateral nasopharynx, skull base, or surrounds internal carotid artery

TORS

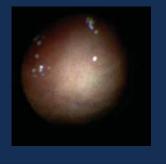
Larynx

- 2nd most common subsite
- Glottic > Supraglottic >> Subglottic
- Glottic tends to grow slowly due to fibrous ligaments
- Invasion of pre-epiglottic and paraglottic spaces allows more rapid spread
- Vocal fixation signifies cricoarytenoid joint involvement, mechanical obstruction in paraglottic space, or RLN infiltration

AUGUSTA UNIVERSITY

AUGUSTA UNIVERSITY

Laryngeal Cancer: AJCC Staging


Supraglo	itis
Ti	Limited to one supraglottic subsite, with normal vocal cord mobility
T2	Tumor involves >1 subsite of epiglottis, or involves one adjacent mucosal subsite outside of epiglottis
T3	Vocal cord fixation, pre-epiglottic or para- glottic space involvement, or invasion of inner cortex of thyroid cartilage
T4a	Tumor invades outer cortex of thyroid cartilage, or invades tissues beyond larynx
T4b	Invasion of prevertebral fascia, mediastinal structure, or encasement of carotid artery

Glottis	
Tia	Tumor limited to one vocal cord, with normal mobility
T1b	Tumor involves both vocal cords, with normal mobility
T2	Extension into supraglottis or subglottis, or with impaired cord mobility
T3	Vocal cord fixation, paraglottic space involvement, or invasion of inner cortex of thyroid cartilage
T4a	Tumor invades outer cortex of thyroid cartilage, or invades tissues beyond larynx
T4b	Invasion of prevertebral fascia, mediastinal structure, or encasement of carotid artery

Greenfield's Surgery, 6th Ed: Head and Neck. Byrd JK, Ferris RL. In Press

Laryngeal Cancer: Anesthesia Concerns

- T3 cancers will narrow glottic aperture but do not always preclude orotracheal intubation
- Bulky supraglottic tumors necessitate awake fiberoptic intubation versus awake tracheotomy

Laryngectomy

- Functional separation of trachea from upper airway
- Permanent stoma that does not require tracheostomy tube
- "Safest airway in the world..."
- Not intubatable transorally
 - Important to differentiate from tracheostomy

www.headandneckcancerguide.org

The Irradiated Patient

- Late effects of radiation may increase difficulty of endotracheal intubation
- Changes continue to progress years after treatment
- Anatomical and functional changes may not be easily recognized with standard evaluation

Long-term Changes Induced by High-Dose Irradiation of the Head and Neck Region: Imaging Findings¹

Minerva Becker, MD • Gerbard Schroth, MD • Peter Zbären, MD Jacqueline Delavelle, MD • Richard Greiner, MD • Peter Vock, MD Abdelkarim Allal, MD • Daniel A. Rüfenacht, MD • François Terrier, MD

Post-Radiation Airway Changes

Finding

- Osteoradionecrosis
- · Chondronecrosis of larynx
- Fibrosis
 - Trismus
 - Tongue/floor of mouth
 - Suprahyoid musculature
 - Neck/spine musculature
- Supraglottic/glottic edema and friability

Consequence

- Potential mandible fracture
- Difficulty mask-ventilating
- Smaller pharyngeal aperture
- Anterior laryngeal displacement
- Poor neck extension
- · Difficult laryngeal visualization
- · Coexistent sleep apnea

Obstructive Sleep Apnea in Survivors

- Mounting evidence for increased prevalence of OSA in patients who have undergone surgery or nonsurgical treatment of HN Cancer
 - Payne RJ, et al. High prevalence of obstructive sleep apnea among patients with head and neck cancer. J Otolaryngol. 2005 Oct;34(5):304-11
 - Stern TP, Auckley D. Obstructive sleep apnea following treatment of head and neck cancer. Ear Nose Throat J. 2007 Feb;86(2):101-3.
 - Faiz SA, Balachandran D, Hessel AC, Lei X, Beadle BM, William WN Jr, Bashoura L. Sleep-related breathing disorders in patients with tumors in the head and neck region. Oncologist. 2014 Nov;19(11):1200-6
 - Zhou J, Jolly S. Obstructive sleep apnea and fatigue in head and neck cancer patients. Am J Clin Oncol. 2015 Aug;38(4):411-4
- Given the rising incidence of HPV+ OPSCC and its favorable outcome, we can expect to encounter this more often

AUGUSTA UNIVERSITY

Mallika Balakrishnan MD, Renju Kuriakose MD & Rachel Cherian Koshy MD (2004) Radiation induced changes in the airway—anaesthetic implications, Southern Africa Journal of Anaesthesia and Analgesia, 10:2, 19-21,

Techniques

Direct Laryngoscopy


- Standard intubation indicated for earlystage cancers
- Operative laryngoscopes may be useful in difficult airways
 - Dedo
 - Anterior commissure
- Videolaryngoscopy
 - Allows simultaneous visualization by anesthesia and surgical teams
 - Angle of blade advantageous after radiation therapy*

*Presenter's experience

Awake Fiberoptic Laryngoscopy

- Several published techniques
 - Topical anesthetic alone versus sedative administration
 - Glossopharyngeal/superior nerve blocks
- Transnasal versus Transoral
 - Transnasal may provide more advantageous angle but requires nasal preparation
- Adequate topicalization is paramount to prevent gag and laryngospasm
- Sedation is contraindicated in the emergent setting due to potential for decompensation
 - True for noncancerous emergencies, as well
 - Angioedema, anaphylaxis, epiglottitis, etc.

Awake Tracheotomy

- Fang et al. Emergent Awake Tracheostomy. The Laryngoscope, Nov 2015
 - 84 patients 2009-2014
 - Malignancy most common indication
 - Supraglottic subsite m/c (48%)
 - 35% local anesthesia alone, 65% local + sedation
 - 32% long-term complications
 - 22% decannulated at a mean 11.8 months

Collaborative Care

Outcomes of intubation in difficult airways due to head and neck pathology

Tim A. Iseli, MBBS, FRACS; Claire E. Iseli, MBBS, MS; J. Blake Golden, MD; Virginia L. Jones, MD; Arthur M. Boudreaux, MD; James R. Boyce, MD; David M. Weeks, MD; William R. Carroll, MD, FACS

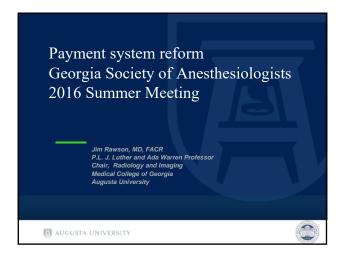
- Iseli et al. ENT Journal 2012
- University of Alabama at Birmingham
- 152 sequential difficult airways in ENT patients
 - 2 Head/Neck anesthesiologists, 19 general anesthesiologists
 - 44% awake fiberoptic
 - 1.3% awake tracheotomy
 - Fewer changes in plan, perceived difficulty under HN anesthesia care

Head and Neck Cancer: Summary

- · Increasing airway difficulty with higher T-stage
- Trismus due to tumor infiltration of masticatory muscles will not improve dramatically with paralytics
- Bulky supraglottic or tongue base tumors may preclude direct laryngoscopy
- Gildescope may facilitate orotracheal intubation after radiation
- Awake fiberoptic intubation is rarely wrong
- Communication between anesthesia and surgical teams is paramount

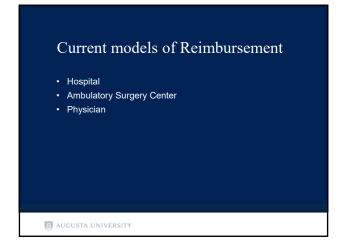
Sunday, July 24

General Session

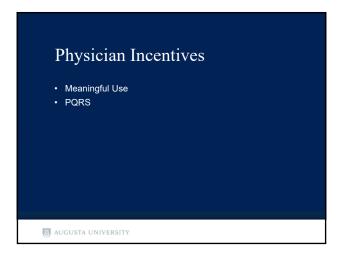

Payment System Reform

James Rawson, MD

Chairperson of Radiology Augusta University Augusta, GA


At the conclusion of the presentation, the learner should be able to:

- 1. Review current models of reimbursement.
- 2. Review proposed models of reimbursement.



Learning objectives Review current models of reimbursement Review proposed models of reimbursement

Physician Reimbursement: Volume Fee for Service Contract Employed

Transition form Volume to Value

- · What is value?
- · Value to who?
- How much does value pay?

AUGUSTA UNIVERSITY

Payments linked to Quality

AUGUSTA UNIVERSITY

Basing Medicare Payments on Value

- January 26, 2015 Announcement
- Half of all Medicare payments to physicians and hospitals in 2018: alternative payment models e.g. medical homes and accountable care organizations (ACOs)
- Department of Health and Human Services (HHS) has set a goal of tying 85% of all fee-for-service payments to quality and cost measures by 2016, and 90% by 2018.

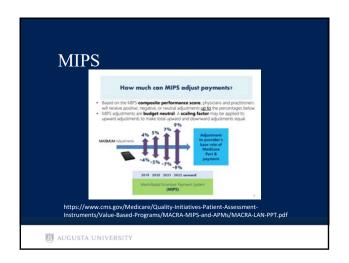
AUGUSTA UNIVERSITY

MACRA

- Medicare Access and CHIP Reauthorization Act of 2015
- Passed House 3/26/2015
- Passed Senate 4/14/2015
- Signed into Law 4/16/2015
- Repeals 1997 Sustainable Growth Rate Physician Fee Schedule Update
- Changes Medicare PFS Payment

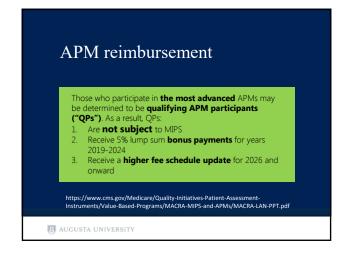
AUGUSTA UNIVERSITY

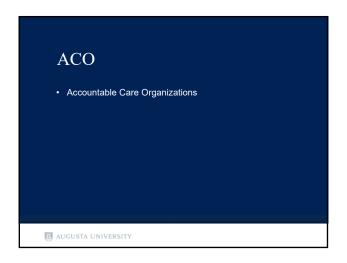
Future Physician Fee Schedule

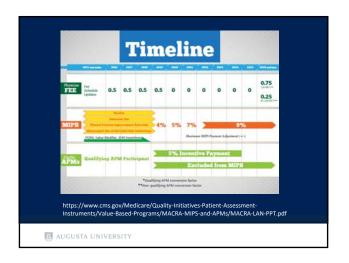

- Merit-Based Incentive Payment System (MIPS)
- Incentives for participation in Alternate Payment Model (APM)
- January 1, 2019 MIPS and APM incentive payments begin
- EPs can participate in MIPS or meet requirements to be qualifying APM participant
- Replacing Physician Quality Reporting Program (PQRS), Value-Based Payment Modifier, Medicare EHR Incentive Program

AUGUSTA UNIVERSITY


Domains of MIPS


- Quality measures (30% of Score)
- Resource Use measures (30% of Score)
 - > Counts for not more than 10% in 2019 and 15% in 2020; additional weight of at least 20% and 15%, respectively, are added to the Quality score in those years
- Clinical Improvement Activities (15% of Score)
- Sub-Categories- Includes Better Off-Hours Access, Care Coordination
- > Patient Safety, Beneficiary Engagement
- > Others as Determined by Secretary
- Meaningful Use of EHRs (25% of Score)


AUGUSTA UNIVERSITY



Medicare Process Listening Sessions Proposed Rule Comment Period Final Rule Proposed Rule and Final Rule Published in Federal Registry

Medicare vs Non-Medicare

Error, Competencies and Standards in Critical Care

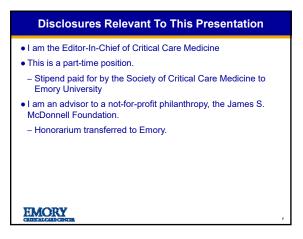
Timothy G. Buchman, PhD, MD

Emory University

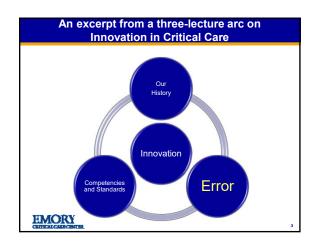
Atlanta, GA

At the conclusion of the presentation, the learner should be able to:

- 1. Describe a taxonomy of error in conception and delivery of critical care.
- 2. Discuss the evolution of competency-based training in critical care.
- 3. Compare the training strategies of aviation and critical care.
- 4. Contrast the use of competencies and standards in evaluation of aviation and of critical care professionals.

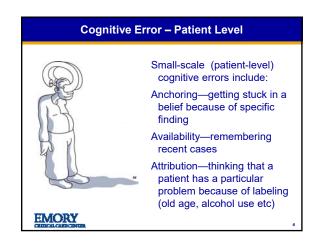

Dr. Timothy Buchman, Ph.D., M.D.

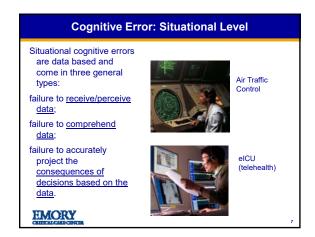
Dr. Buchman is the founding director of the Emory's Critical Care Center (ECCC), which is integrating ICUs throughout the Emory Healthcare system. The Center has assembled clinicians, teachers and investigators from diverse disciplines to deliver the Right Care, Right Now, Every Time. Dr. Buchman is past president of the Shock Society, the Society for Complex Acute Illness and the Society of Critical Care Medicine, the latter being the largest organization of critical care professionals worldwide. His research has spanned the bench-to-bedside continuum, including NIH-funded studies of physiological dynamics; of patient monitoring; of the genetics of sepsis and of ICU end-of-life care.

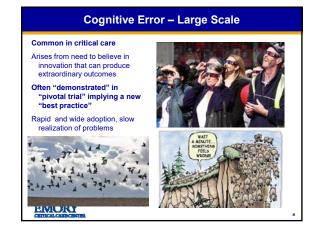

Before joining Emory, he served as the Edison Professor of Surgery and Director of Acute and Critical Care Surgery at Washington University in St. Louis. Prior to his 15 years on the faculty at Washington University, Dr. Buchman directed the surgical intensive care unit and founded the trauma service at Johns Hopkins Hospital in Baltimore, where he completed his surgical training.

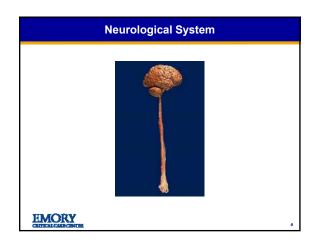
Dr. Buchman's current activity focuses on promoting situation awareness in critical care to achieve better health, better care and lower costs. He is the principal investigator on a Round 1 CMMI Healthcare Innovation Award entitled "Rapid Training and Deployment of Non-Physician Providers in Critical Care". The award includes two innovations—telemedicine and the use of advanced practice providers—to efficiently deliver high-reliability care to locations where critical care physicians are in short supply. Now in its fourth year, the award has achieved its objectives of delivering better, smarter care to the federal beneficiaries it serves. Scaling and dissemination have started, with three Non-Physician Provider Program graduates recruited to healthcare systems in Michigan, Texas and Washington (state) to establish their own training programs.

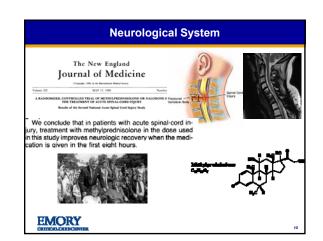
Error, Competencies, and Standards in Critical Care Emory Critical Care Center Tim Buchman 2016 GSA Summer Meeting July 22-24, 2016

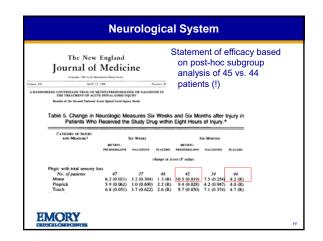


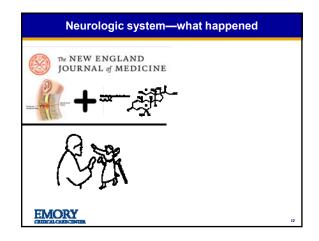

Disclaimers The opinions expressed are strictly personal. They may or may not represent the opinions and views of any organization or publication with which I am affiliated. The contents of this presentation are solely the responsibility of the presenter.

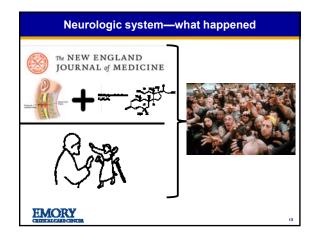


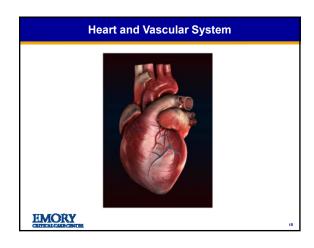

1. Describe a taxonomy of error in conception and delivery of critical care. LECTURE 2. Discuss the evolution of competency-based training in critical care. DISCUSSION of our APP Training Program 3. Compare the training strategies of aviation and critical care. DISCUSSION of Personal Experience 4. Contrast the use of standards versus competencies in evaluation of aviation and of critical care professionals. DISCUSSION of a transition: "Practical Test Standards" to "Airman Certification Standards"



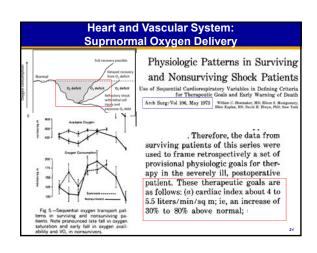


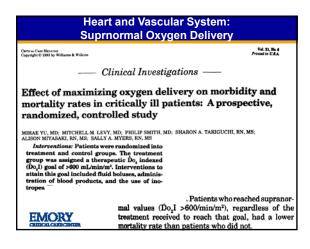


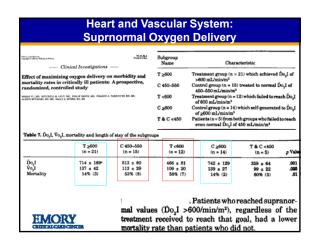


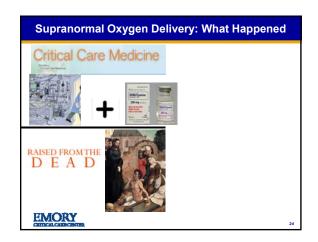




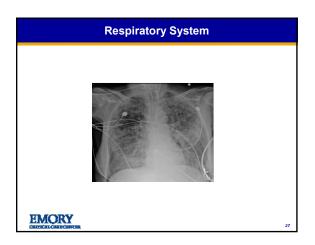


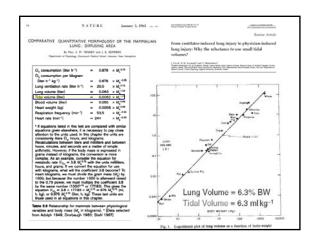


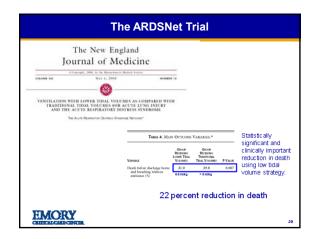


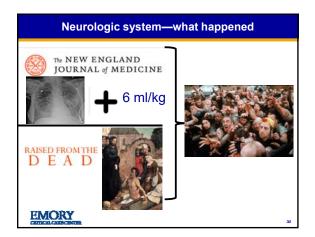


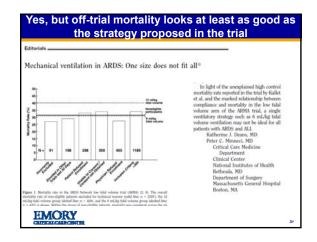


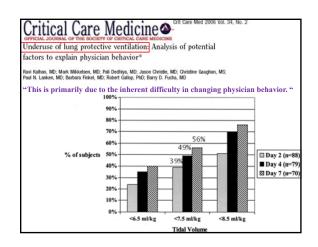


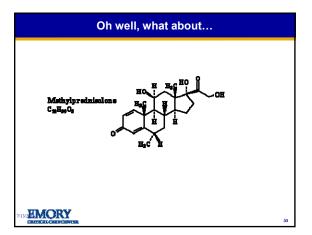


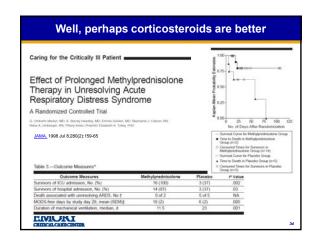


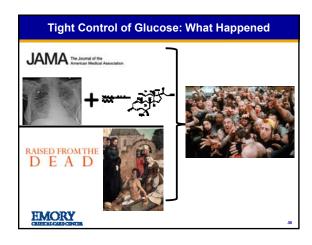


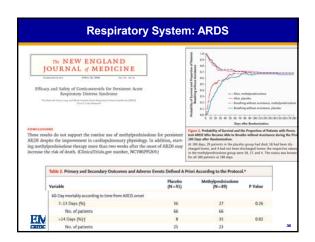


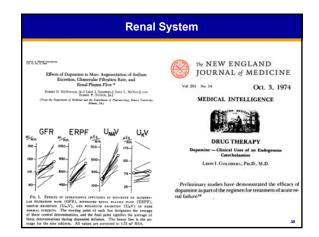


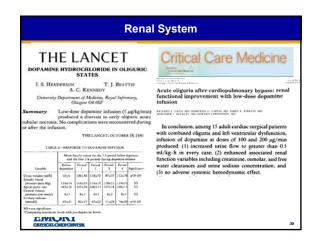


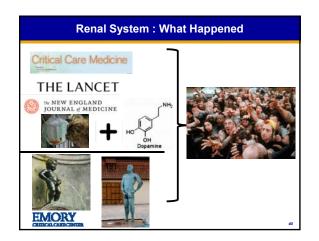


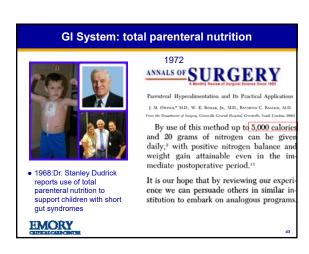


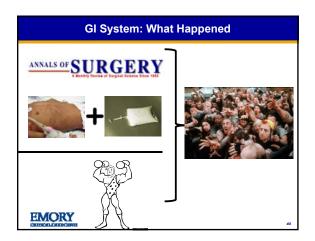


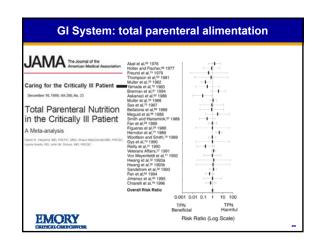


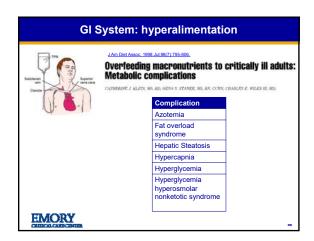


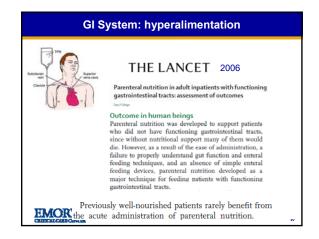


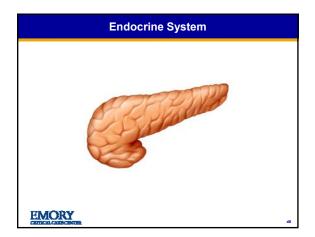


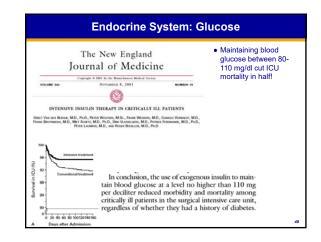


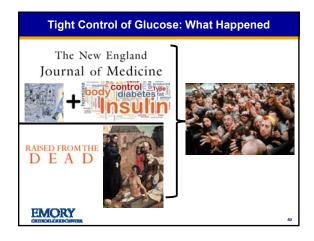

Conclusions: The use of low-dose dopamine for the treatment or prevention of acute renal failure cannot be justified on the basis of available evidence and should be eliminated from routine clinical use. (Crit Care Med 2001; 29:1526–1531)

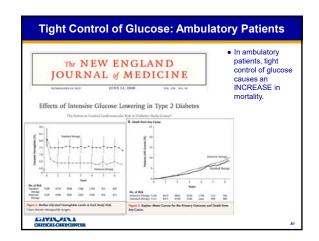

EMORY

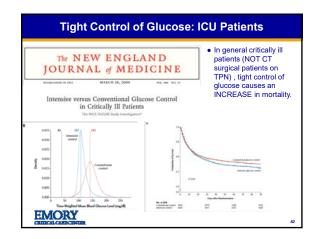


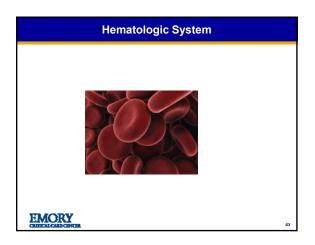


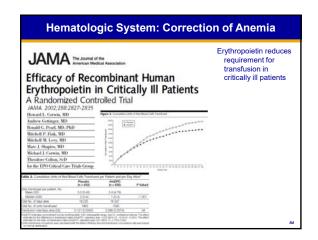


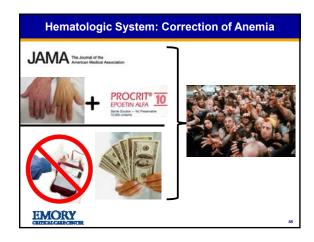


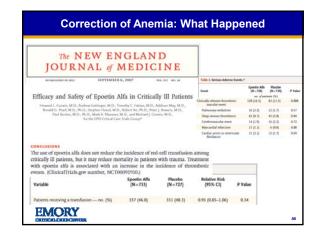


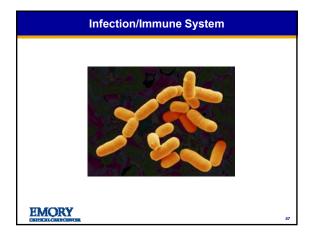


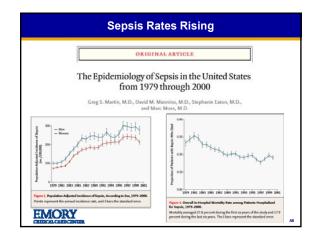


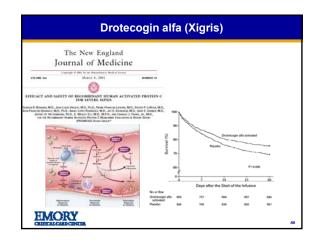


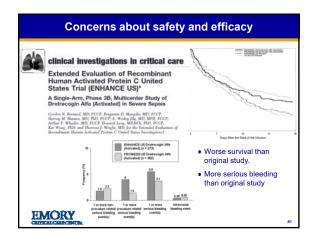


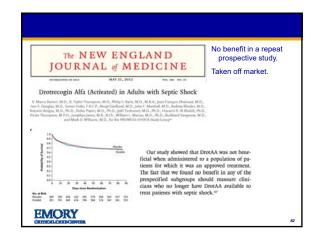








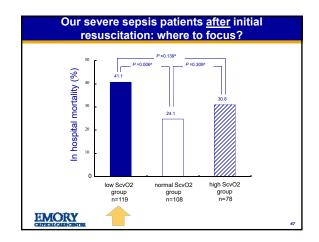




Synthesis

- •A common problem was reported to yield to a simple solution that could be rapidly (albeit in the case of drugs expensively) implemented.
- Change was implemented on a huge scale, much larger than could possibly be justified by the study.
- Patients were likely harmed. The new standard was either discarded or extensively modified.
- In each case, the new standard involved a seemingly simple change in practice

 EMORY


Synthesis - 2

- Humans are not only complicated (meaning that they have multiple interacting parts) but also complex (meaning that the physiology of the whole cannot be predicted by summing the physiology of the component parts).
- Critical care "works" because critical care physicians, nurses and allied health personnel create a safe context in which the patient can heal.
- Well-intended interventions might or not have the desired effect.
- However with very high frequency, these newer interventions have unintended adverse effects.

EMORY

• There are few "miracle treatments" in critical care • Apparent success of an innovation should trigger caution. Who actually benefitted? Where is the opportunity for improvement and are we focusing there? EMORY

Synthesis - 4

- There are few "miracle treatments" in critical care
- Apparent success of an innovation should trigger caution. Who actually benefitted? Where is the opportunity for improvement and are we focussing there?
- Follow-up evaluation of the innovation "in the wild" on the appropriate patient population is essential.
- If we should be cautious about new treatments in critical care, what should we strongly and immediately embrace?

EMORY

1.Describe a taxonomy of error in conception and delivery of critical care. LECTURE—DONE WHICH OF THE FOLLOWING WOULD YOU LIKE TO CHAT ABOUT? 2.Discuss the evolution of competency-based training in critical care. DISCUSSION of our APP Training Program 3.Compare the training strategies of aviation and critical care. DISCUSSION of Personal Experience 4. Contrast the use of standards versus competencies in evaluation of aviation and of critical care professionals. DISCUSSION of a transition: "Practical Test Standards" to "Airman Certification Standards"

The ICU: Past, Present and Future for Georgia and the Nation

Timothy G. Buchman, PhD, MD

Emory University

Atlanta, GA

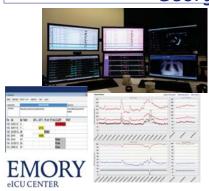
Cheryl Hiddleson, MSN

Emory Healthcare Inc.

Atlanta, GA

At the conclusion of the presentation, the learner should be able to:

- 1. Review the history of ICU telehealth.
- 2. Discuss the evolution of for-profit and not-for-profit ICU telehealth delivery system.
- 3. Critically evaluate prior reports of tele-ICU clinical and financial performance.
- 4. Analyze the tele-ICU component of the Emory CMS Healthcare Innovation Award with respect to clinical and financial performance.


Cheryl Hiddleson MSN, RN, CCRN-E

Cheryl is the Director of the Emory eICU Center. Cheryl completed her Masters degree in Clinical Nurse Leadership from The University of Alabama in 2013. She is a member of The Society of Critical Care Medicine, The American Association of Critical Care Nurses, Georgia Nurses Association, American Telemedicine Association, Society of Critical Care Medicine, and the Georgia Association of Nurse Leaders.

Cheryl joined Saint Joseph's Hospital in 1991 and has held various positions including 15 years in the Medical Surgical ICU as the daily charge nurse, critical care resource nurse, and most recently Administrative Supervisor/Flow Coordinator. She has extensive experience related to critical care, patient logistics, and patient flow/throughput. Cheryl is committed to advancing innovative care delivery methods such as tele-ICU and telehealth, to promote quality care for all patients regardless of location.

Participating in Yoga and road cycling are two of the activities she enjoys most when not working.

Tele ICU: Past, present and future for Georgia

Cheryl Hiddleson MSN, RN, CCRN-E Director, Emory eICU Center

Timothy G. Buchman PhD, MD, FACS, FCCP, MCCM Founding Director, **Emory Critical Care Center Emory eICU Center**

Disclosures: None

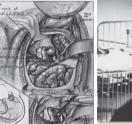
Disclosure/Disclaimer

- Neither speaker has financial interests or other conflicts relevant to this talk
 - Dr. Buchman is Editor-in-Chief of *Critical Care Medicine* and also serves as an advisor to the not-for-profit James S. McDonnell Foundation, a grantmaking philanthropy, www.jsmf.org
 - Neither Emory nor the speakers receive ANY financial consideration from Philips Corporation
- · All opinions are personal and do not represent those of Emory, SCCM, CMS, or Critical Care Medicine

A Short History of Critical Care Medicine

1923:

Walter Dandy, MD. Neurosurgeon at Johns Hopkins


Invented many neurosurgical procedures, such as the clipping

of aneurysms.

Also invented the postoperative recovery

unit—the first ICU

A few historical innovations: from problem to solution

EMORY

EMORY

A few historical innovations: from problem to solution

A few historical innovations:

from problem to solution

ICUs evolved as a location to consolidate equipment

1958 Blodgett Memorial Hospital, USA around-the-clock care for critically ill patients

Led to creation of Coronary Care Units, 1963

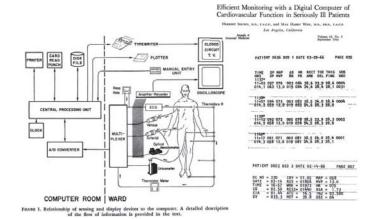
First three coronary care units were established in 1963 in Toronto (Toronto General Hospital); Kansas City (Bethany Hospital) and Philadelphia (Presbyterian Hospital).

Results varied widely. The Kansas City group reported that mortality was cut in half—from 39% to 19%--following acute myocardial infarction.

EMORY

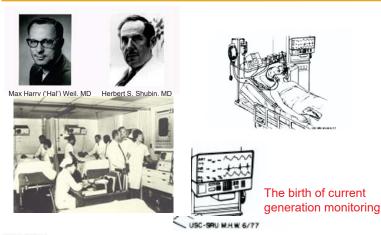
Led to creation of Coronary Care Units, 1963

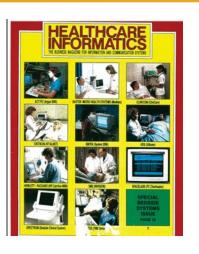
The Toronto group reported dismal results—no improvement.


Although the equipment was the same, the application was different. The Toronto group required that a patient with a life-threatening arrhythmia be treated by 8 steps!

- 1. Summoning a physician,
- 2. Wheeling the patient in bed to the nurses station.
- 3. Placing a board under the chest,
- 4. Inserting an airway,
- 5. Beginning chest compressions,
- 6. Endotracheal intubation,
- 7. Obtain an ECG and
- 8. Finally defibrillate the patient if the defibrillator was available

Not just technology. How technology is applied.

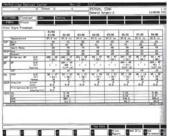

Data trying to make inroads: Computers and Bedside Monitors (1966)


EMORY

EMORY

The modern Bedside Monitor

Rise of Informatics - EMR (1)



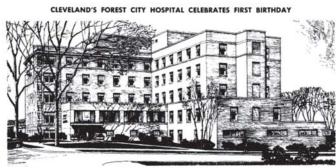
Rise of Informatics-EMR (2)

Rise of Informatics- EMR (3)

Circa 1988

Circa 2009

EMORY


EMORY

ULENIER

New York World's Fair, 1964 Bell "Picture Phone"

* Paragram de la companya de la comp

Forest City Hospital, Cleveland, Ohio

Forest City Hospital, Cleveland, Ohio

EMORY

EMORY

CUCENTER 16

Cleveland, Ohio- Mid 1970's

Cleveland, Ohio- Mid 1970's

Telemedicine in Critical Care: An Experiment in Health Care Delivery

Betty L. Grundy, MD*
Pauline Crawford, RN*
Paul K. Jones, PhD†
May Lou Kiley, PhD†
Arnold Reisman, PhD†
Yoh-Han Pao, PhD*
Edward L. Wilkerson, MD*
J. S. Gravenstein, MD*

Grundy BL, Crawford P, Jones PK, Kiley ML, Reisman A, Pao YH, Wilkerson EL, Gravenstein JS: Telemedicine in critical care: An experiment in health clire delivery. JACEP 6:439-444, October, 1977. telemedicine, hospital cooperation.

INTRODUCTION

Because of a scarcity and maldistribution of intensivists — physicians who specialize in critical care medicine — in the United States, there are significant problems with optimal delivery of critical care services. We are investigating telemedicine — medicine practiced from a distance using telecommunications — to assess whether it can solve these problems. Specifically, we hypothesized that

 Telemedicine can enable an intensivist to consult with patients in the intensive care unit (ICU) of a small hospital with no critical care physician of its own.

Fig. 1. Mobile Camera Unit, FCH users - nurses, physicians, and patients see themselves and the UH consultant on 9-inch monochrome screens.

Fig. 2. Monitoring Station. The UH consultant, controlling the mobile camers at FCH remotely, views medical personnd and patients on a 19-inch color screen.

Grundy BL, Crawford P, Jones PK, Kiley ML, Reisman A, Pao YH, Wilkerson EL, Gravenstein JS: Telemedicine in critical care: An experiment in health care delivery. *JACEP* 6:439-444, October, 1977. *telemedicine*, *hospital coop-*

Cleveland, Ohio-Mid 1970's

Present problems of telemedicine in critical care stem less from inadequate technology than from inadequate ways of using available systems. Technical innovations can free us from limitations of time and space only when we develop innova-

tive professional and administrative

patterns of use.

Grundy BL, Crawford P, Jones PK, Kiley ML, Reisman A, Pao YH, Wilkerson EL, Gravenstein JS: Telemedicine in critical care: An experiment in health care delivery, JACEP 6:439-444, October, 1977. telemedicine, hospital coop-

The Final Report on the Cleveland Experiment, 1982

0090-3493/82/1007-0471502:00/0 Chrin' At Cake Mithierse; Copyright © 1982 by The Williams & Wilkins Co.

Telemedicine in critical care: Problems in design, implementation, and assessment

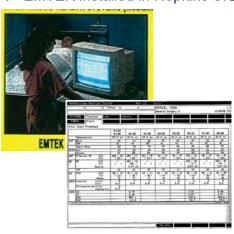
BETTY LOU GRUNDY, MD; PAUL K. JONES. PhD; ANN LOVITT, MD

We introduced telemedicine, i.e., telecommunications for delivery of health services, to alleviate scarcity and maldistribution of critical care services. For 18 months, we used interactive television to provide consultation with university-based critical care physicians for patients in the ICU of a 100-bed hospital. Telemedicine "visits" (1548) were made to 395 patients. Television consultation had greater clinical and educational impact than consultation using the telephone. Equipment was expensive but proved to be reliable and easy to use. Interactive television extended the availability of specialist expertise, but full exploitation of this technology for delivery of critical care services was not achieved. Extensive background research, currently underway at the University of Pittsburgh, is necessary before the next telemedicine demonstration.

CONCLUSION

Since the closure of Forest City Hospital, many patients who would have been treated in its ICU are undoubtedly being admitted to larger institutions with relatively complete acute care facilities. Thus, closing small hospitals may represent one solution for problems stemming from scarcity and maldistribution of critical care services. By using telemedicine for consultation and triage, however, and transporting those patients who require the services of a large institution, the small hospital might serve community needs in a cost-effective way as part of a regionalized health care system.

20


Road to convergence of video and EMR - 1

1991 - EMTEK installed in Hopkins SICU

EMORY

EMORY

Road to convergence of video and EMR - 2

"eICU" term invented and trademarked

IC·USA: E-Solutions for Critical Care

IC-USA brings technology and expertise together to dramatically improve critical care outcomes. Our e-solutions for critical care, the Continuous Expert Care Network (CXCN) and the Intensivist Decision Support System (IDSS) are built upon an Intensivist's understanding of what creates value in the critical care delivery process. To this understanding we bring the power of today's connectivity and information technologies, such as private networks, the Internet, relational databases, decision analysis, and telemedicine. Together these building blocks are defining a new standard for critical care.

2

Road to convergence of video and EMR - 3

Intensive care unit telemedicine: Alternate paradigm for providing continuous intensivist care

Brian A. Rosenfeld, MD, FCCM, FCCP; Todd Dorman, MD, FCCM; Michael J. Breslow, MD, FCCM; Peter Pronovost, MD, PhD; Mollie Jenckes, MSc; Nancy Zhang, PhD; Gerard Anderson, PhD; Haya Rubin, MD, PhD

cogiciere Instituto dei units giulai accura nei anticasa precinsiga el hospital admissiona and resource comampion. Ad verse oveità are common in CU patients and contribute in high mortality rates and costs. Although exclusion demonstralita reduce contribute a contribute in high contribute reduce contribute in the con

Setting: A ten-bed surgical ICU in an academic-affiliated com munity hospital.

Patients: All patients whose entire ICU stay occurred within t study periods.

Interventions: A 16-wk program of confinous intensivist owns sight was instituted in a surgical EQU, where before the intervention intensivist, intensivist consultation was available but there were no on-situation intensivists, intensivists provided management during the intervention tion using remote monitoring methodologies video conferencing and computer-based data transmissions) to obtain clinical informationial and to communicate with on-situ personnel. To assess the benefit the remote management program, citical and occomonic performance. mance during the intervention were compared with two 16-wi

Measurements and Main Results: (UI and hospital mortal (observed and Anni Physiology and Crown in-Ball Evaluation serverily—adjusted), (XI complications, CUI and hospital singlished) and the servery of the server

Conclusions: Technology-enabled remote care can be used to provide continuous ICU patient management and to achieve im proved clinical and economic outcomes. This intervention's usucess suggests that remote care programs may provide a means o improving quality of care and reducing costs when on-site intensivist coverage is not available. (Crit Care Med 2000; 28

Key Wores: telemedicine; critical care; complications; medical errors; intensivists; monitoring; medical economics; e-health care; remote care; remo

Road to convergence of video and EMR - 4

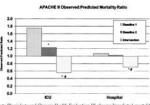


Figure 1. Acute Physiology and Chronic Health Evaluation III observed/predicted mortality ratio, ICI intensive case unit. *n < 05 vs. handing 1: 8n < 05 vs. handing 2.

Table 3. Complications

Complication	Baseline I No. (%)	Baseline 2 No. (%)	Intervention No. (%)
Sepsis	14	17	10
Reintubation	8	9	- 6
Myocardial infarction	3	4	1
Acute renal failure	4	6	4
Respiratory failure	1	3	2
GI bleed	4	10	2
Cardiac arrest	8	6	3
Readmission to ICU (within 48 hrs)	8	10	- 6
Total complications	50	65	34"
Total no. of patients with complications (%)	34 (15.1)	38 (18.8)	19 (9.5)*

Gl. gastrointestinal; ICU, intensive care unit. $^{o}p < .05$ compared with baseline period 2. Incidence of ICU compilications during the three stu

IC-USA becomes VISICU

Pacific Venture Group is Lead Investor in Financing IC-USA,

- PVG Gains Seat on Board of Directors -

IRVINE, Calif., June 12 /PRNewswire/ -- Pacific Venture Group (PVG), a leading healthcare focused venture capital firm, today announced a \$3 million lead investment, part of a \$9 million first close Series B Preferred round in IC-USA, Inc., provider of a unique telemedicine application that enables hospital Cardinal Health Ventures and Abell Foundation, also participated in the financing.

EMORY

EMORY

9/02/2002 @ 12:00AM

The E-Gang: Medical Marvels

Inspired, the doctors quit their hospital jobs in 1998 to found closely held Visicu in Baltimore to commercialize the concept. Visicu designed an "eICU" that, rather than replace on-site staff, provides another set of expert eyes to watch over patients 24 hours a day. An eICU manned by one doctor and a couple of nurses costs \$2 million to \$3 million to set up, about \$2 million a year to run, and can monitor 50 to 100 beds in multiple ICUs. One monitor in the eICU functions like a Bloomberg terminal for patient data, displaying readings on blood-oxygen levels and other data; a click of the mouse switches from one patient to another. Proprietary software continuously monitors vital signs and pops up "smart alerts" when patients start to deviate beyond their established stable ranges. High-resolution cameras at bedsides let the remote team visually examine patients.

Patent Granted 2004

USONGS NASSEDI

(12) United States Patent Rosenfeld et al.

(10) Patent No.: US 6,804,656 B1 (45) Date of Patent: Oct. 12, 2004

SYSTEM AND METHOD FOR PROVIDING CONTINUOUS, EXPERT NETWORK CRITICAL CARE SERVICES FROM A REMOTE LOCATION(S)

(75) Inventors: Brian A. Rosenfeld, Baltimore, MD (US); Michael Breslow, Lutherville, MD (US)

(73) Assignee: VISICU, Inc., Baltimore, MD (US) Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/443,072

(22) Filed: Nov. 18, 1999

Related U.S. Application Data

OTHER PUBLICATIONS

Terry Ann Capuano, et al., Remote Telemetry, Nursing Management, Vo. 26, No. 7, Jul 1995, p. 26.* Valeriy Nenov and John Klopp, Remote Access to Neurosurgical ICU Physiological Data using the World Wide web, health Care in the Information Age, 1996, pp. 242–249.* Betty L. Gnundy, et al., Telemedicine in Critical Care: An Experiment in Health Care Delivery, JACEP, vol. 6, Oct. 1977, pp. 439–444.*

Experiment in Health Care Delivery, JACEP, vol. 6, Oct. 1977, pp. 439–444.*
Susan L. Mabry, et al., Integrated Medical Analysis System, Proceedings of the 1997 Winter Simlation Conferece, 1997, pp. 1167–1168.* on M. Kaplan and Geraldine Fitzpatrick, Designing

Simon M. Kaplan and Geraldine Fitzpatrick, Designing Support for Remote Intensive-Care Telehealth Using the Locales Framework, ACM, 1997, pp. 173–184.* Douglas A. Perednia, Telemedine Technology and Clinical Applications, JAMA, vol. 6, Feb. 8, 1995, p. 483.* Microsoft Press Computer Dictionary, Third Edition, 1997, p. 430.*

(List continued on next page.)

EMORY

IPO: Going Public

Forbes

Visicu: Great Promise, But Beware

Visicu offers investors great promise: The founders, intensive care unit doctors, saw a way to improve care in their field and developed it. The company has growing revenue and recent profits, but warns that it expects losses in the future as it expands and tries to grab market share.

The company's promise comes wrapped in uncertainty and risk. Visicu holds one patent and has applied for ten others, but is likely to square off against a competitor in a nasty, expensive patent dispute in the future.

Do individual investors want to bet on a new company in a highly competitive and regulated sector and feed the lawyers, too? Probably not. Despite the company's solid technology and strong customer list, the IPO won't show much of a heartbeat in early trading.

It was the era of the tech bubble

The prognosis for Visicu Inc.'s future on the stock market looked good Wednesday, as the Baltimore health care technology company's stock rose 55 percent in its first day of trading.

Visicu (NASDAQ: EICU) had already raised the share price twice in the 24 hours before it began trading. The company ultimately priced the 6 million shares it is offering the public at \$16. Trading opened Wednesday at \$18.08 and ended at \$24.78. Shares had spiked as high as \$25.92 over the course of trading.

January, 2008 (Just before the global financial collapse)

VISICU, Inc. Acquired by Philips

February 20, 2008 09:25 AM Eastern Standard Time

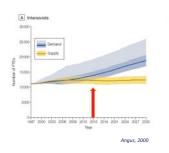
BALTIMORE—(BUSINESS WIRE)--VISICU, Inc. ("Visicu" or the "Company") (NASDAO: EICU), a healthcare information technology and clinical solutions company focused on critical care, today announced the successful completion of the acquisition of the Company by Philips Holding USA Inc. ("PHUSA"), a subsidiary of Koninklijke Philips Electronics, N.V. (NYSE: PHG, AEX: PHI) ("Royal Philips") for approximately \$427 million, including payment to option holders, pursuant to the previously announced Agreement and Plan of Merger, dated as of December 18, 2007, by and among Visicu, PHUSA and Ice Merger Sub, Inc. As of February 20, 2008, shares of Visicu common stock will no longer be listed on the NASDAO.

Visicu stockholders will receive shortly a mailing from the Company's transfer agent describing the procedure for returning stock certificates and receiving payment of the merger consideration.

"We should spend more time learning how to achieve an accurate diagnosis and less time searching for a magic bullet"

Roger Bone, "Sir Issac Newton, sepsis, SIRS, and CARS." Crit Care Med 1996. 24:1125-1128.

Why, What and How elCU works



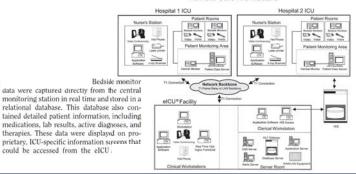
Early years: Many clinicians, little technology, no data Present day: Fewer clinicians, disconnected technology massive data

emoryhealthcare.org

EMORY HEALTHCARE

Origin of the value proposition: Too few ICU MDs and maldistribution

Origin of the value proposition: Aging of the US Nursing workforce

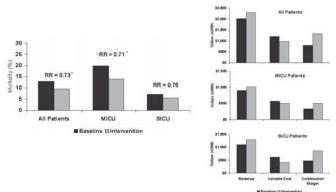

Need for a new strategy (2004)

Effect of a multiple-site intensive care unit telemedicine program on clinical and economic outcomes: An alternative paradigm for intensivist staffing*

Michael J, Breslow, MD; Brian A, Rosenfeld, MD; Martin Doerfler, MD; Gene Burke, MD; Gary Yates, MD; David J. Stone, MD; Paige Tomaszewicz, MSN, BSN; Rod Hochman, MD; David W. Plocher, MD

Need for a new strategy (2004)

Remote Care Architecture


emoryhealthcare.org

emoryhealthcare.org

EMORY

Need for a new strategy (2004)

emoryhealthcare.org

From: Hospital Mortality, Length of Stay, and Preventable Complications Among Critically III Patients Before and After Tele-ICU Reengineering of Critical Care Processes

JAMA. 2011;305(21):2175-2183. doi:10.1001/jama.2011.697

Preintervention	Tele-ICU Intervention	
Bedside monitor alarms	Physiological trend alerts Abnormal laboratory value alerts Review of response to alerts Off-site team rounds	
Daily goal sheet	Electronic detection of nonadherence Real-time auditing Nurse manager audits	

Table 1. Comparison of Intensive Care Unit (ICU) Processes Before and After Tele-ICU

Workstation review initiated by intensivist includes electronic medical record, imaging studies, interactive audio and video of patient, interaction with nurse and respiratory therapist, Telephone case review initiated by house staff or affiliate practitioner and assessment of response to therapy

Team audits

From: Hospital Mortality, Length of Stay, and Preventable Complications Among Critically III Patients Before and After Tele-ICU Reengineering of Critical Care Processes

JAMA. 2011;305(21):2175-2183. doi:10.1001/jama.2011.697

Outcome	Preintervention Group (n = 1529)	Tele-ICU Group (n = 4761)	Unadjusted P Value	Tele-ICU Effect Estimates ^a	P Value
	No. (%) of	Patients			
Mortality rate Hospital	208 (13.6)	562 (11.8)	.07	0.40 (0.31-0.52) ^b	.005
ICU	164 (10.7)	410 (8.6)	.01	0.37 (0.28-0.49) ^b	.003
n m ma	Mean (SD) and f	Median [IQR], d			
Length of stay Hospital	13.3 (17.1) 7.9 [0.2-15.0]	9.8 (10) 6.8 [0.2-12.0]	<.001	1,44 (1.33-1.56) ^c	<.001
ICU	6.4 (11) 2.5 [0.2-6.5]	4.5 (6.7) 2.4 [0.1-4.6]	<.001	1.26 (1.17-1.36) ^C	<.001

Abbrevialions: I/U, Intensive care unit; I/OR, Intenpuritie range.

"Estimate of effect size after adjustment for differences in acuty score, admission source, admission I/U, time after enrolment of first case in group, and other predictive factors including laboratory values and physiological measurements as detailed in the eSupplement at http://www.pirnac.com.

Pindicates odds ratio (65% confidence interval).

Caldidates lausgard ratio (65% confidence interval).

From: Hospital Mortality, Length of Stay, and Preventable Complications Among Critically III Patients Before and After Tele-ICU Reengineering of Critical Care Processes

JAMA. 2011:305(21):2175-2183. doi:10.1001/jama.2011.697

		otal (%) ts Eligible ^s		<i>p</i> Value
Clinical Practice Guideline Adherence	Preintervention Group	Tele-ICU Group	OR (95% CI)	
Prophylaxis Stress ulcer	1253/1505 (83)	4550/4760 (96)	4.57 (3.91-5.77)	<.00
Deep venous thrombosis	1299/1527 (85)	4707/4733 (99.5)	15.4 (11.3-21.1)	< .00
Best practice Cardiovascular protection	311/391 (80)	2866/2894 (99)	30.7 (19.3-49.2)	<.00
Prevention of ventilator- associated pneumonia	190/582 (33)	770/1492 (52)	2.20 (1.79-2.70)	<.00
Ventilator-associated pneumonia	76/584 (13)	32/1949 (1.6)	0.15 (0.09-0.23)	<.00
Catheter-related bloodstream infection	19/1529 (1)	29/4761 (0.6)	0.50 (0.27-0.93)	.005
Acute kidney injury	174/1452 (12)	540/4565 (12)	1.00 (0.71-1.69)	.38
After hours care plan review for ICU admissions, No. (%)	705/1529 (46) ^b	2287/4761 (48) ^c	1100 120	
Interventions for physiological instability	All bedside clinician initiated	483 ^d 37 573 ^e		
Abbreviations: Cl, confidence interval; IC *Unless otherwise indicated. *DOR Hours admission neviews not using *COR hours admissions reviews using a *Initiated by bedicide cliniciated by bedicide cliniciated *Initiated prior to action by bedicide clini-	a workstation. workstation.	OR, odds ratio.		

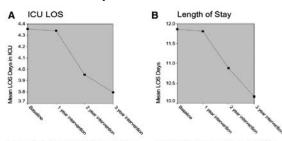
Date of download: 4/17/2016

Copyright © 2016 American Medical Association. All rights reserved.

Outcomes reports (2012)

Clinical outcomes after telemedicine intensive care unit implementation*

Beth Willmitch, RN, BSN; Susan Golembeski, PhD, RN, CHRC; Sandy S. Kim, MA, MEd; Loren D. Nelson, MD, FACS, FCCM; Louis Gidel, MD, PhD, FCCP


Objective: To examine clinical outcomes before and after implementation of a telemedicine program in the intensive care units of a few-hospital healthcare system.

In the computation of a telemedicine period of 1 yr before the start of a telemedicine intensive seriod of 1 yr before the start of a telemedicine intensive seriod of 1 yr before the start of a telemedicine intensive seriod of 1 yr before the start of a telemedicine intensive seriod are 1, 2, and 3 yrs after telemedicine intensive care unit program implementation at each of hospital. The post periods are 1, 2, and 3 yrs after telemedicine intensive care units of 3 yrs discontine care units of 1 yrs was bowered from 11 36 days (8%). Cl 422–489 to 3.00 days (8%). Cl 422–489 to 3.00 days (8%). Cl 826–807 (8%) of 422–489 to 428, days (8%) of

Outcomes reports (2012): shorter stays—less RN demand

eline (1 year) and Post Impl mentation by Year ine (1 year) and Post Implementation by Year Figure 1. A, Severity of illness-adjusted intensive care unit (ICU) length of stay (LOS). B, Severity of illness-adjusted hospital LOS,

Outcomes reports (2012)

Table 4. Logistic regression model for hospital mortality

	Variable	Relative Risk		nfidence rval	p
Hospital mortality	Intervention period Baseline	Reference			
	1 yr post 2 yr post	0.92 0.88	0.82	1.03 0.98	.023
	3 yr post	0.77	0.69	0.87	<.00

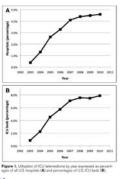
Hosmer-Lemeshow statistics for goodness of fit for model p < .001.

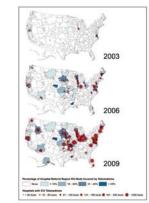
A look back(2014)

Adoption of ICU Telemedicine in the United States

Jeremy M. Kahn, MD, MS¹²; Brandon D. Cicero, MPH²; David I. Wallace, MD, MPH¹³; Theodore J. Iwashyna, MD, PhD⁴³

Objective: ICU telemedicine is a novel approach for providing criti-cal care services from a distance. We sought to study the element of use and patterns of adoption of this schendogy in U.S. ICUs. Design: Retrospective study combining a systematic listing of ICU telemedicine installations with hospital characteristic data from the Centers for Medicare and Medicaid Services. We exam-ined adoption over time and compared hospital characteristics between facilities that have adopted ICU telemedicine and those that have not.


Setting: U.S. ICUs.
Setting: U.S. hospitals from 2002 to 2010.
Interventions: None.


urements and Main Results: The number of hospitals using ICU telemedicine increased from 16 (0.4% of total) to 213 (4.6% of total) between 2003 and 2010. The number of ICU beds covered totall between 2003 and 2010. The number of ICU bads covered by telemedicine increased from 598 (6.0% et lottall) in 5799 (7.2%) of total). The average annual rate of ICU bed coverage growth was 101% per year in the first four study years but slowed to 8.1% per year over the last four study years (9.00 f) for difference in linear trend). Compared with non-adopting hospitals, hospitals adopting

ICU telemedicine were more likely to be large (percentage with > 400 beds: 11.1% vs 3.7%, p<0.001), teaching (percentage with resident coverage: 31.4% vs 21.9%, p=0.003), and urban (percentage) because in attacked areas with more than 1 million residents: 45.3% vs 30.1%, p<0.001). Conclusions: ICU telemedicine adoption was initially rapid but recently slowed. Efforts are needed to uncover the barriers to future growth, particularly reparding the optimal strategy for using this technology most effectively and efficiently. (Crit Care Med 2014; 42:382–388) Key Words: critical care; intensive care units; rural hospitals; telemedicine

A look back (2014)

Conclusions: ICU telemedicine adoption was initially rapid but recently slowed. Efforts are needed to uncover the barriers to future growth, particularly regarding the optimal strategy for using this technology most effectively and efficiently. (Crit Care Med 2014; 42:362-368)

Benefits are debated -- 1

Wilcox and Adhikari Critical Care 2012, 16:R127

RESEARCH Open Access

The effect of telemedicine in critically ill patients: systematic review and meta-analysis

M Elizabeth Wilcox1* and Neill KJ Adhikari2

Conclusions: Telemedicine was associated with lower ICU and hospital mortality among critically ill patients, although effects varied among studies and may be overestimated in nonrandomized designs. The optimal telemedicine technology configuration and dose tailored to ICU organization and case mix remain unclear.

Benefits are debated -- 2

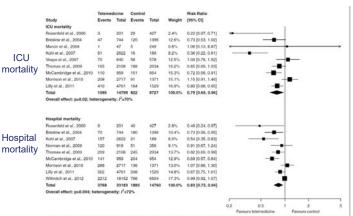
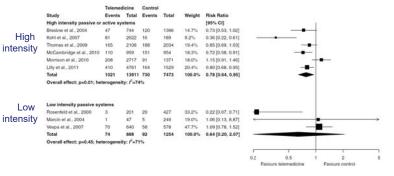



Figure 2 Effect of telemedicine on ICU mortality (upper panel) and hospital is confidence interval ICB was calculated by using a random-effects model. Weight refer

EMORY

Benefits debated -- 3

Costs hotly debated -- 1

Original Research

CRITICAL CARE

The Costs of Critical Care Telemedicine **Programs**

A Systematic Review and Analysis

Gaurae Kumar, MD; Derik M. Falk, MD; Robert S. Bonello, MD; Jeremy M. Kahn, MD; Eli Perencevich, MD; and Peter Cram, MD, MBA

EMORY

Costs hotly debated -- 2

Results: Our systematic review identified eight studies reporting tele-ICU costs. These studies suggested combined implementation and first year of operation costs for a tele-ICU of \$50,000 to \$100,000 per monitored ICU-bed. Changes in patient care costs after tele-ICU implementation ranged from a \$3,000 reduction to a \$5,600 increase in hospital cost per patient. VHA data suggested a cost for implementation and first year of operation of \$70,000 to \$87,000 per ICU-bed, depending on the depreciation methods applied.

Conclusions: The cost of tele-ICU implementation is substantial, and the impact of these programs on hospital costs or profits is unclear. Until additional data become available, clinicians and administrators should carefully weigh the clinical and economic aspects of tele-ICUs when considering investing in this technology. CHEST 2013; 143(1):19-29

Contemporary (2016) economic modeling

Economic Evaluation of Telemedicine for Patients in ICUs*

Byung-Kwang Yoo, MD, PhD1; Minchul Kim, PhD1; Tomoko Sasaki, PhD2; Joy Melnikow, MD, MPH3; James P. Marcin, MD, MPH4

Objective: Despite telemedicine's potential to improve patients' health outcomes and reduce costs in the ICU, hospitals have been slive to introduce telemedicine in the ICU due to light que to the conduct a cost-efficience seeker/weess. This study is first aim was to conduct a cost-efficiences analysis to selfmet the commental cost-efficiences ratio of telemedicine in the ICU, compared with ICU without telemedicine, from the healthcare sys-tem perspective. The second aim was to examine potential cost saving of telemedicine in the ICU through probabilistic analyses and brank-even analyses. Designs: Simulation analyses performed by standard decision sould.

Setting: Hypothetical ICU defined by the U.S. literature.
Patients: Hypothetical adult patients in ICU defined by the U.S.

Internations

Internations: The intervention was the introduction of telemedicine in the ICU, which was assumed to affect per patient per-bopital study ICU cost and hospital mortility. Telemedicine in the OCU operation costs included the telemedicine equipment-installation (start-up) costs with Syeur depreciation, maniferance occurs and cilincian staffing costs. Telemedicine in the ICU effectiveness was measured by cumulative quality adjusted life years for 5 years after ICU discharge.

Measurements and Main Results: The base care cont-effectiveness analysis estimated telemedicine in the ICU to extend 0.011 quality-adjusted life years with an incremental cost of \$5.16 per patient compared with ICU without telemedicine, resulting in an incremental cost-effectiveness ratio of \$45.820 per additional quality-adjusted life years \$5.160.0011, The probabilistic cost-effectiveness analysis estimated an incremental cost-effectiveness analysis estimated an incremental cost-effectiveness state of \$55.026 bit in 3.015, These probabilistic cost-effectiveness ratio of \$55.026 bit in 3.046 950% CI tono a negative value louggesting cent sensings to \$375.870. These probabilistic cost-effective life and so feasible if the per patient per-loopid value (suggesting cent seven less than \$402 and lens than \$155, respectively, based on break-even analyses. Contactionistics of cent analyses and cost assing in some cases. The translected or cost and effectiveness, estimated by break-even analyses, help hospitals determine the impact of belenedicine in the ICU and potential cost away. Civil Care Med 2016; 44 266-724 Mey Weeds: cost-effectiveness; oot saving; economic evaluation; intensive case units; telebrality; telemedicine

Critical Care Medicine: February 2016 - Volume 44 - Issue 2 - p 265-274 doi: 10.1097/CCM.000000000001426

Economic Evaluation of Telemedicine for Patients in ICUs*

Yoo, Byung-Kwang MD, PhD¹; Kim, Minchul PhD¹; Sasaki, Tomoko PhD²; Melnikow, Joy MD, MPH³; Ma James P. MD, MPH⁴

Measurements and Main Results: The base case cost-effective ness analysis estimated telemedicine in the ICU to extend 0.011 quality-adjusted life years with an incremental cost of \$516 per patient compared with ICU without telemedicine, resulting in an incremental cost-effectiveness ratio of \$45,320 per additional quality-adjusted life year (= \$516/0.011). The probabilistic cost-effectiveness analysis estimated an incremental cost-effectiveness ratio of \$50,265 with a wide 95% CI from a negative value (suggesting cost savings) to \$375,870. These probabilistic analyses projected that cost saving is achieved 37% of 1,000 iterations. Cost saving is also feasible if the per-patient per-hospital-stay operational cost and physician cost were less than \$422 and less than \$155, respectively, based on break-even analyses.

Emory total elCU operational costs are currently \$643 per patient.

\$422+\$155=\$577 is break-even even if no 'downstream' cost savings

eICU staffing is based on patient ratios. This creates step fixed costs: if we monitored just 12 additional beds, our eICU costs per patient would drop to approximately \$500 (varies depending on occupancy rates).

Critical Care Medicine: February 2016 - Volume 44 - Issue 2 - p 265–274 doi: 10.1097/CCM.000000000001426 Feature Articles


Economic Evaluation of Telemedicine for Patients in ICUs*

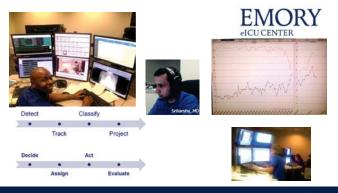
Yoo, Byung-Kwang MD, PhD¹; Kim, Minchull PhD¹; Sasaki, Tomoko PhD²; Melnikow, Joy MD, MPH¹; Marcin, James P. MD, MPH¹

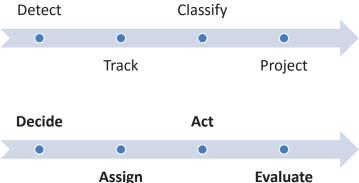

Parameter	Incremental Cost-Effectiveness Ratio < \$100,000 (Per Quality- Adjusted Life Year)	Cost Saving*
ICU-mortality reduction by tele-ICU (18.5–28.9%)	15.8%	Not feasible even when 100%
Impact of tele-ICU on per-patient per-hospital-stay ICU cost (ratio to pre-tele-ICU cost, excluding tele-ICU operation cost) (0.71–1.14)	98.4% (1.6% reduction)	90.3% (9.7% reduction)
Floor-mortality increase by tele-ICU (12.3–51.8%)	53.4% (increase)	Not feasible even when (-) 100% (i.e., 100% 'reduction'
Impact of tele-ICU on per-patient per-hospital-stay floor cost (ratio to conventional floor cost, excluding tele-ICU operation cost) (0.80–1.30)	108.4%	96.7%
Per-patient per-hospital-stay tele-ICU operation cost (\$909-\$1,057)	\$1,560	\$422
 Per-patient per-hospital-stay tele-ICU equipment- installation (start-up) cost (\$200–\$348)⁶ 	\$851	Not feasible even when \$0
(2) Per-patient per-hospital-stay tele-ICU maintenance and clinical staffing cost (\$680-\$828) ^a	\$1,331	\$193
(3) Per-patient per-hospital-stay tele-ICU physician staffing cost (\$642-\$790) ⁴	\$1,293	\$155
Baseline mortality in pre-tele-ICU (8.91-9.38%)	6.3%	Not feasible even when 100%
Baseline mortality in conventional floor (2.8-3.57%)	5.196	Not feasible even when 100%

Circle Internation in the InCU, Pretefel CIU = INCU without a telemedicine team, st swing of telefelU compared with pre-telefelU without a telemedicine team, that is, tele-ICU dominates pre-telefelU without a telemedicine team surging pretefelication (12, 14).

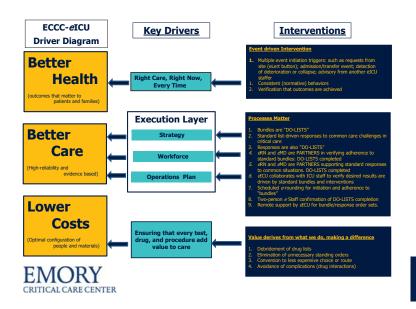
Georgia and Nationally: ↑ Demand for Care, ↓ Provider Resource

What we were facing


emoryhealthcare.org


emoryhealthcare.org

The Emory eICU COR



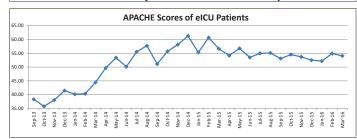
What we are (really) doing: detection/correction of anomalies

emoryhealthcare.org

Evaluate

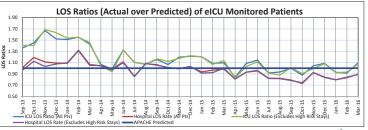
The Emory Program: Industry standard convergent eICU platform eRNs: 24 x 7 x 365 Multiple EMR, physiologic monitors eMDs: nights weekends and holidays 16 locations, 136 beds in 5 hospitals (2 university, 1 hybrid, 2 community)

emoryhealthcare.org


EMORY HEALTHCARE

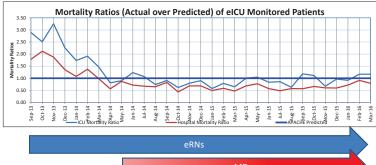
Since we began monitoring patients in March 2013

APACHE Scores of Emory eICU: Community-Centered Hospital

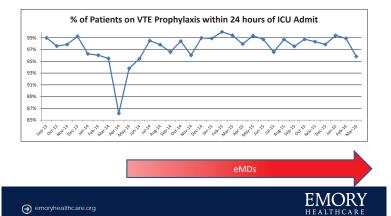


EMORY

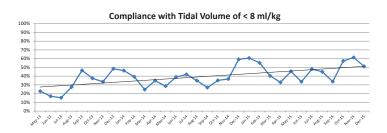
emoryhealthcare.org


EMORY

Emory eICU Results: Community-Centered Hospital

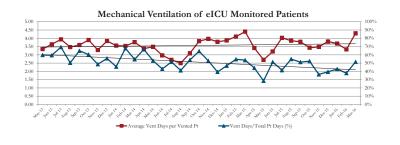

eMDs

Emory eICU Results: Community-Centered Hospital

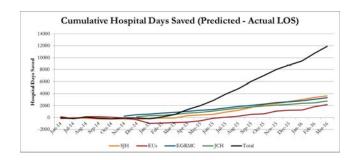


eMDs

VTE Best Practice Compliance

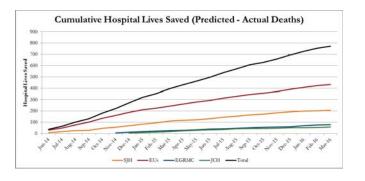


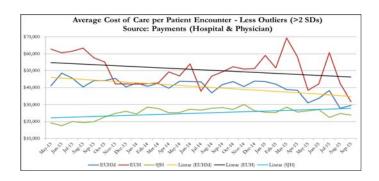
Lung Protection Compliance



Reducing the ventilation burden

EMORY emoryhealthcare.org


Resources Conserved


emoryhealthcare.org

Lives Saved

Lower Costs – Internal Analysis

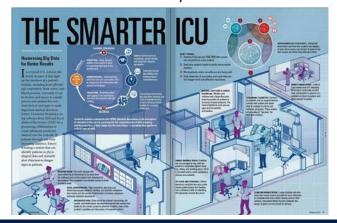
emoryhealthcare.org

Lower Costs – External Analysis

3rd Party Commissioned by CMS, completely out of our control

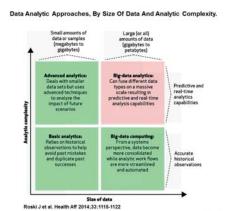
The following information constitutes what has thus far been publicly released by CMS.

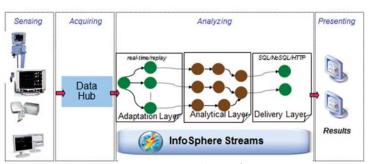
- Analysis of two consecutive quarters of operation beginning July 2014
- Metric: Total cost to federal beneficiaries for the hospitalization and extending 60 days post-discharge (their metric, not ours)
- Comparators: Propensity matching based on the evaluator's criteria (not ours)
- Savings estimated at \$1200-\$2200 per federal beneficiary served, primarily through discharge in better health, lower need for long-term
- At the end of the second quarter, p=0.1


Analysis is ongoing.

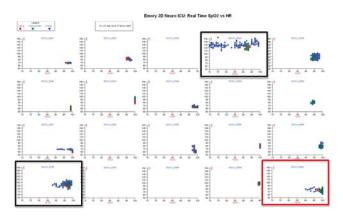
Additional quarters have been completed and reported to CMS. **Data are embargoed as of this date.**

Where Emory is headed

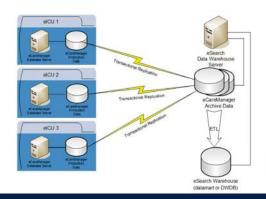




"Big" Data and Real-Time Analytics



Stream Computing in Intensive Care



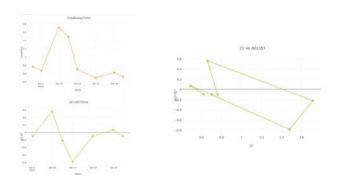
Computing across dozens of streams per patient, dozens of patients per ICU, multiple ICUs within a single hospital, multiple hospitals within a healthcare system, and referencing archived (reference) data.

Real-time population presentations

Leveraging the Philips DB

GaTech FHIR project - 1

GaTech FHIR project -2


GaTech FHIR project - 3

emoryhealthcare.org

GaTech FHIR project - 4

What has been learned

- In some circumstances, eICU consistently saves lives
- In some circumstances, eICU consistently saves costs
- In some circumstances, eICU enhances consistent practice
- eICU can support local teams when numbers and experience of bedside personnel are overwhelmed by complexity, acuity or volume

What is not known

- Where impact of eICU is least/greatest
 - Bedside coverage (physician, APP, nursing, AHP)
 - Patient complexity (low, medium, high risk)
- Influence of local culture on eICU effectiveness
- Influence of eICU on local culture
- Influence of eICU on aggregate quality, safety, access, financial performance

What we are trying to do

Standalones

Primitive

Integrated

Sense-----Compute/Display

Next steps?

The Perioperative Surgical Home (PSH) & Us

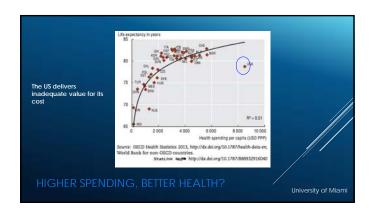
Miguel Cobas, MD

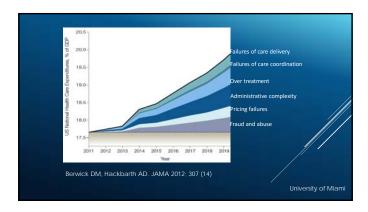
University of Miami Miller School of Medicine Department of Anesthesiology Miami, FL

At the conclusion of the presentation, the learner should be able to:

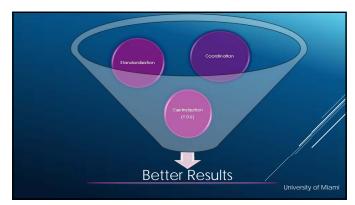
- 1. Identify the characteristics that make anesthesiologists good candidates for perioperative physicians.
- 2. Discuss some of the challenges that make it difficult for an anesthesiologist to fully participate in PSH.
- 3. Discuss current trends in pediatric orthopedic surgery

"The perioperative surgical home model would pioneer the role of anesthesiologists acting to coordinate the services provided by other health care professionals during the perioperative period. Such a model may, if executed correctly, help to manage the full spectrum of surgical episodes, reduce costly complications and improve the efficiency of care"

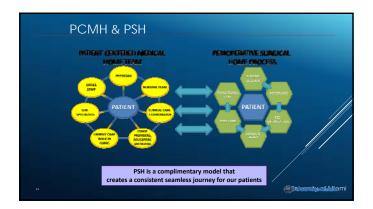

ASA COMMITTEE ON FUTURE HEALTH CARE MODELS


Why the Anesthesiologist?

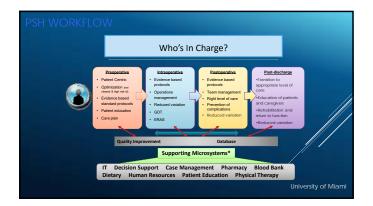

Any physician can be the center of the PSH model, overseeing the patient care plan and ensuring the team meets the pre-defined goals. The anesthesiologist, however, is the optimal choice. Why? Anesthesiologists are uniquely positioned to fulfill this role because of their ability to assess, evaluate, and prepare patients with an array of complex comorbidities, and then manage these comorbidities intra-operatively and post-operatively. This in-depth understanding enables anesthesiologists to drive the standardization of care—one of the most critical components of PSH—thus reducing risk and optimizing outcomes.

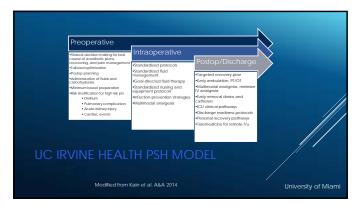

Patient Safety and Quality Healthcare, March/April 2015

University of Mlami


Ambitious and Measurable
 Improving the patient experience of care (including quality and satisfaction)
 Improving the health of populations
 Reducing the per capita cost of health care.

BETTER RESULTS

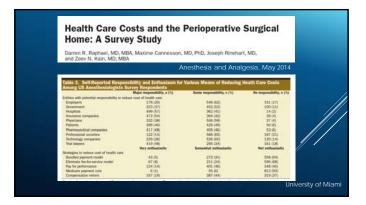


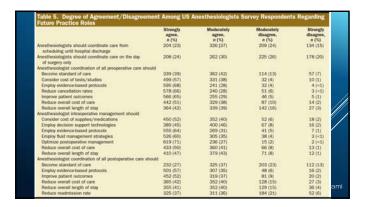


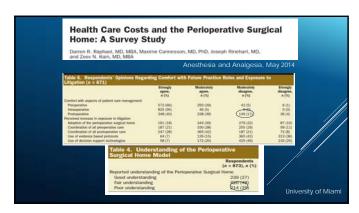
Health Care Costs and the Perioperative Surgical Home: A Survey Study

Darren R. Raphael, MD, MBA, Maxime Cannesson, MD, PhD, Joseph Rinehart, MD, and Zeev N. Kain, MD, MBA

Anesthesia and Analgesia, May 2014


• Survey looking at attitudes towards reducing cost of healthcare and perioperative care delivery


• Enthusiasm in being part of cost reduction strategies


• In other words: how important do we see ourselves in the process?

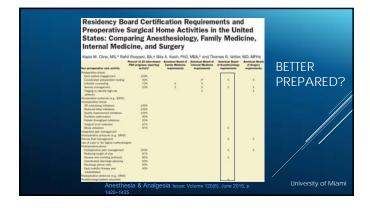
THE CHOSEN ONES?

University of Miami

The Anesthesiologist-Directed Perioperative Surgical Home: A Great Idea That Will Succeed Only if It Is Embraced by Hospital Administrators and Surgeons

John F. Butterworth, N. MD. and Jeffrey A. Green, MD.

Anesthesia and Analgesia. May 2014


Is everyone up/willing to the task?

Compensation: now is \$0!, but we tend to be expensive

"why would the executive choose an anesthesiologist rather than a lower paid medical specialist who is available, competent and willing?"

"It will be up to anesthesiologists to provide the evidence that it will make sense for a health system to have anesthesiologists administer and provide care in its PSH rather than another specialist who is equally bright, equally information-technology-savvy, but potentially less expensive"

University of Miami

Mac Cite Pres 2006 Jan 84(1):28:31.

Associations between the hospitalist model of care and quality-of-care-related outcomes in patients undergoing hip fracture surgery.

Boy A¹, Hackman MG, Boy V.

Hospitalist involvement in the medical management of patients undergoing hip fracture surgery may be associated with decreases in TTC, TTS, LOS, and total hospital cost.

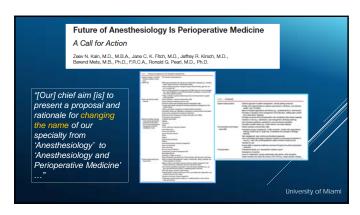
Med. Miness Cent. 2012 Jan 1-16(1):252-36.

The impact of hospitalists on length of stay and costs: systematic review and meta-analysis.

Reston, S¹, Seat J. Centre S. Fitzerinots. Microral B. Recomment S. Fotzerinots. Section 2012 Jan 1-16(1):252-36.

The impact of hospitalists on length of stay and costs: systematic review and meta-analysis.

Reston, S¹, Seat J. Centre S. Fitzerinots. Microral B. Recomment S. Fotzerinots. Section 2012 (Section 1):252-363.


The impact of hospitalists on conclusion that hospitalists significantly reduce LOS without increasing costs. These findings can be used to define and measure expectations of performance for hospital medicine groups.

JACO Hear Fill 2013 October 2012 (Section 2013 Sept. 1)

Associations between use of the hospitalist model and quality of care and outcomes of older patients hospitalist core varied significantly across hospitals for heart failure admissions and was not associated with improved 30-day outcomes.

University of Miami

Directions for Claiming CME Credit

Please follow these directions to access the course, claim your CME credits, complete the program evaluation(s) and print your CME certificate(s):

1. Log in to the ASA Education Center at: http://education.asahq.org/

If you have accessed the ASA Education Center for a previous meeting, please use your existing ASA username and password.

If you have not previously accessed the ASA Education Center, you will soon receive an e-mail from the ASA Education Center with log-in instructions.

- 2. Once you have logged on to the ASA Education Center homepage, click the tab that says "MY CURRENT COURSES" for the link to the {course}.
- "MY CURRENT COURSES" can be found at: http://education.asahq.org/my-activities
- 3. Select the link to access the course evaluation and claim credit.
- 4. To retrieve a username or password, enter your email address at: http://education.asahq.org/user/password

Note: Physicians should claim only credit commensurate with the extent of their participation.

If you have any questions, please contact the ASA Education Center at educationcenter@asahq.org.